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Fundamental Solutions of the Plane Problem 

Introduction to the Concept of Dislocation 

 Two analytical solutions that are useful in formulating boundary value problems 

involving cracks are the point force and edge dislocation in an infinitely extended 

medium. For simplicity the discussion is restricted to the plane problems shown in Figure 

3: the concentrated force per unit thickness F  (Figure 3a) and the discrete edge 

dislocation b  (Figure 3b), which is represented by the symbol ⊥ . The extension to three 

dimensional problems is described briefly in Chapter 3. Because they are associated with 

a concentrated action at a point, the force and dislocation solutions are the Green's 

functions for the plane problem of elasticity. While the physical meaning of force is clear, 

the concept of dislocation may not be familiar to the reader and thus warrants an 

explanation. Although dislocations were not experimentally observed in materials until 

the 1950's, the concept of the dislocation was introduced and developed in elasticity 

theory by Volterra and Timpe in the early 1900's. 



 

 

 

Fig. 3 Point force and dislocation representations 



  

Fig. 4 Climbing edge dislocation 

 



 

Fig. 5 Gliding edge disclocation 

 

Consider first the so called climbing edge dislocation shown in Figure 4a. This 

configuration, which corresponds to β π=  in Figure 3, denotes the procedure shown in 

Figures 4b and 4d. A semi-infinite cut, defined as the slip plane, is made along the 

negative x −axis. The slip plane terminates at the z −axis, which is defined as the 

dislocation line. The upper and lower surfaces of this cut are displaced relative to each 

other in the y −direction by a distance by , and a rigid plate is inserted and welded to these 

surfaces. The typical crystallographic interpretation of this procedure is included in 



Figures 4c and 4e, which represent lattice models of the elastic continuum. Figure 4c 

shows a perfect lattice consisting of 30 numbered atoms which comprise the 

neighborhood of the dislocation line. A circuit starting out at atom 4 comprised of ten 

consecutive steps, two in the positive y −direction, three in the positive x −direction, two 

in the negative y −direction, and finally three in the negative x −direction, leads back to 

atom 4. Figure 4e shows the configuration that results when an extra horizontal sheet of 

atoms is inserted between atom pairs 3-4, 9-10, and 15-16. Starting out at atom 4 and 

repeating the number, direction, and order of steps as in Figure 4c, this time crossing the 

slip plane, leads to atom 5. The Burgers vector 
!
b , shown in Figure 4e, represents the 

vector perpendicular to the slip plane that is required to close the gap produced by the 

extra sheet. For this configuration the magnitude of the Burgers vector is by , and its 

direction is parallel to the dislocation line. Define the range of the polar angle as 

− < ≤π θ π . Then the Burgers vector introduces, as shown in Figure 4d, a discontinuous 

tangential displacement component along the negative x −axis, given by 

( ) ( )u u byθ θπ π− − = .  

 The gliding edge dislocation bx  is shown in Figure 5. For this case after the cut is 

made, the upper and lower surfaces are displaced relative to each other in the 

x −direction by a distance bx , and then welded. The physical interpretation for this case is 

shown in Figures 5c and 5e. The row of atoms 1-7-13 are displaced relative to row 19-25 

by a distance bx  in the positive x −direction. This procedure renders row 3-9-15 an extra 

half plane of atoms inserted between rows 2-8-14 and 4-10-16. Any circuit starting at 

atom 2 that crosses the slip plane ends up at atom 1, and the Burgers vector, which is 

perpendicular to the dislocation line, has a component in the x −direction whose 



magnitude is bx . For this configuration the radial displacement component along the 

negative x −axis is, for − < ≤π θ π , given by ( ) ( )u u br r x− − =π π . 

 Note the similarity between the gliding and climbing edge dislocations. If atoms 

19 and 25 are removed in Figure 52 and the sketch is rotated by 90 degrees counter 

clockwise, the climbing edge dislocation is recovered, atoms 3, 9 and 15 representing the 

extra sheet. In other words, for a fixed coordinate system, the only difference between the 

climbing edge dislocation and the gliding edge dislocation is the orientation of the extra 

half-plane, the first being inserted horizontally, the latter vertically. If the medium 

contains a mixed dislocation at a point, then the magnitude of the Burgers vector is given 

by b b bx y= +2 2 . 

Derivation of the form of the stress fields 

 The stress, strain, and displacement fields associated with the point force and 

dislocation are derived next. Most books on dislocations that derive the solution to the 

edge dislocation problems reproduce the analysis based on Michell's general 

representation of the Airy stress function. The derivation presented here for both the edge 

dislocation and concentrated force problems relies on linearity and dimensional analysis 

to determine the form of the stress fields. The only relevant parameters in these elasticity 

problems besides the magnitude of the action (P or b) are r, ,θ ν and E . Since the 

problems are linear the stress is proportional to the magnitude of the action 

 

    σij
F F∝                                                                         (18a) 

    σ ij
b b∝                                                                         (18b) 

 



where the superscripts " "b  and " "F  are labels for the fields associated with the 

dislocation and point force, respectively. For the force the units of stress result by simply 

dividing Equation (18a) by r . For the dislocation, on the other hand, only E  can provide 

units of stress. Multiplying Equation (18b) by E  leads to dimensional inconsistency, 

which can be remedied by dividing the resulting equation by the only remaining available 

length parameter r . Consequently 

 

    ( )σ θ νij
F

ij
F
r
g= ,                                                           (19a) 

    ( )σ θ νij
b

ij
b
r
Ef= ,                                                           (19b) 

 

This argument has essentially provided the r −dependence of the stress fields, and has 

reduced the problem to the determination of functions fij  and gij . Note that both stress 

fields possess a 1
r

 singularity. By absorbing the numerators of Equations (19) into 

common functions Aij , which may depend on θ ν, , , ,E b F , but not on r , the solutions to 

both problems can be expressed as 

 

    
( )

σ σ
θ

ij
b F

ij
ijA
r

, ≡ =                                                         (20) 

 

The distinction between the point force and dislocation is made by requiring different 

force and displacement jump conditions on a contour surrounding their point of 

application. The force, as shown in Figure 6a, is equilibriated by the tractions acting on 



any closed contour surrounding its point of application. Moreover, the displacements are 

continuous across any line L . For the dislocation, as shown in Figure 6b, the tractions are 

self-equilibriated, and the magnitudes of the radial and tangential displacement 

discontinuities across the slip plane L are equal to br  and bθ . 

 Equilibrium and compatibility provide three equations for the three unknown Aij  
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With Equations (20),  Equations (21) are transformed into the ordinary differential 

equations 
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The solution of the last equation is 

 



    A A c crr + = +θθ θ θ3 4cos sin                                           (23) 

 

Differentiating Equation (22a) and adding the result to Equation (22b) leads to 

 

    d A
d

Ar
r

2

2 0θ
θθ

+ =                                                              (24) 

 

whose solution, together with Equations (22a) and (23), provides 

 

    A c crθ θ θ= +1 2cos sin                                                  (25a) 

    A c cθθ θ θ= − +1 2sin cos                                                (25b) 

    ( ) ( )A c c c crr = − + +3 2 4 1cos sinθ θ                                (25c) 

 

The unknown constants c c c c1 2 3 4, , ,  for the force and for the dislocation are determined 

next using the previously discussed force and displacement jump conditions. 

The (Symmetric Problem ) 

 Without loss of generality the solution is developed to the problem which is 

"symmetric" with respect to the x −axis, which corresponds to β π=  in Figures 3 and 6. 

That is, the physics is invariant to a reflection about the x-axis The word symmetric is in 

quotes because while certain physical quantities are symmetric about the x −axis, others 

are asymmetric. The positive stress and displacement components at ±θ are shown in 

solid arrows in Figure 7. The dashed arrows indicate the required directions of σ θr  and uθ  

for the picture to be symmetric about the x −axis. This symmetry requires 



 

    ( ) ( )σ θ σ θrr rr+ = −                                                        (26a) 

    ( ) ( )σ θ σ θθθ θθ+ = −                                                       (26b) 

    ( ) ( )σ θ σ θθ θr r+ = − −                                                     (26c) 

    ( ) ( )u ur r+ = −θ θ                                                           (26d) 

    ( ) ( )u uθ θθ θ+ = − −                                                         (26e) 

 

which make c c1 4 0= = .  

 Consider a circular free body diagram of unit radius surrounding the point of 

action, as shown in Figure 6a. For β π= , the net force per unit thickness resulting from 

the tractions along the circular boundary satisfies the equilibrium equations 

 

 

                                               (27) 

    

By substituting Equation (25a) and Equation (25c) into Equation (27) if follows that 

 

                                   (28) 

 

Equation (28) provides the first relation between the unknown constants c2  and 

c c c5 3 2≡ − . The second equation, which specifies the displacement discontinuity, 



requires the calculation of the displacements, which can be determined through the strain-

displacement relations and Hooke's Law 
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Integrating εrr  and εθθ  
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where the functions of integration f g,  are determined through the equation that results 

from substitution of  Equations (30) into Equation (29c) 
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The left hand side of Equation (31) is a function of θ , while the right hand side is a 

function of r . Therefore both sides are equal to a constant k . Solving the right hand side 

of Equation (31) we obtain 

 

    ( )g r k r= +ω                                                                 (32) 

 

The contribution from g  to uθ  and ur  represents, as discussed previously, a rigid body 

translation and rigid body rotation. Setting k = =ω 0 , the general solution for f  is the 

addition of the homogeneous and particular solutions 

 

    ( )f c c c c= + + +6 7 8 9sin cos sin cosθ θ θ θ θ                    (33) 

 

where the homogeneous solution c c6 7sin cosθ θ+  represents a rigid body translation that 

is also set equal to zero. Substitution of Equation (33) into Equation (31) provides c8 0=  

and ( )c c c c
9 2
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components become 
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As expected, the displacement solutions include multivalued functions, namely θ θsin  

and θ θcos . As mentioned previously, the slip plane can be placed along β π=  by  

placing the branch cut along the negative x −axis, that is, defining the range − < ≤π θ π . 

If it is desired to place the slip plane along β = 0 , then the polar angle should be defined 

in the range 0 0≤ < π . Both choices lead to a continuous radial displacement component, 

i.e., ( ) ( ) ( ) ( )u u u ur r r rπ π π− − = − =0 2 0, and a discontinuous tangential component given, 

for the respective definitions of the polar angle, by 

 

 

                                                                                                                                         (35) 

 

For the dislocation with slip plane placed along the negative x-axis (the gap between the 

upper (+) and lower (-) surfaces is given by  

( ) ( )g x u x u x u u by y y( ) ( ) ( )≡ − = − + − =+ −
θ θπ π ), Equations (27) and (35) provide 
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The last term in each of Equations (36d) and (36e) represents a rigid body translation, and 

can be omitted. As expected, the hoop stress along the positive x − axis is tensile. 

 If the slip plane is desired along the positive x − axis, then the displacement 

discontinuity should be prescribed as ( ) ( )u u byθ θ π0 2− = . This choice will lead to stress 

and displacement components equal to the negative of those given by Equations (36), and 

as expected, positive hoop stress along the negative x − axis. 

 For the point force we find 
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 Plots of the stress components produced by the dislocation and point force are 

shown in Figures 8 and 9. 



Exercise 1 

Derive expressions for the components of stress and displacement associated with a 

concentrated force applied at the surface of a half-plane, as shown in the figure. 

Solution: 

σ
π

θ
rr

P
r

= −
2 cos  

σ σθ θθr = = 0  

( ) ( )[ ]u P rθ πµ
κ θ θ κ θ θ= − − − + −

4
1 1cos sin ln sin  

( ) ( )[ ]u P rr = − − + + −
4

1 1
πµ

κ θ θ κ θ θsin cos ln cos  



Exercise 2 

Derive expressions for the stress and displacement fields produced by a gliding edge 

dislocation. 



THE USE OF FUNDAMENTAL SINGULAR SOLUTIONS OF ELASTICITY TO 

SOLVE CRACK PROBLEMS 

This chapter presents several examples that illustrate how the previously 

derived discrete dislocation and point force solutions can be used to formulate the 

solutions of plane boundary value problems involving cracks. The approach 

involves the use of distributed dislocations and forces, and is referred to as the 

Green's function method, reduces elasticity problems to a system of one dimensional 

singular integral equations. A brief description of how the method can be used to 

formulate three dimensional problems is provided in the Appendix. 

Many mathematical techniques are available to solve the field equations 

of elasticity. The Green's function method is presented in this book because the 

approach and the resulting equations have a clear physical interpretation. The 

discussion also emphasizes that even for relatively simple configurations, 

sophisticated mathematics is needed to derive explicit solutions for crack opening 

displacements and stress intensity factors. The method relies on the knowledge of a 

fundamental solution that satisfies as many of the boundary conditions of the 

problem, and provides the necessary force or displacement discontinuity. Replacing 

the concentrated action with a continuous distribution enables one to write the 

remaining boundary conditions as a system of integral equations. 

Paramount to the development of solutions using the Green's function method is 

the understanding of boundary and symmetry conditions. As will be shown 

through several examples, this understanding guides the formulation of a physically 

motivated superposition scheme. 

Example: The Exterior Crack 



 

Fig. 3.1 The exterior crack problem 

The exterior crack shown in Figure 3.1a is perhaps the simplest crack problem that can 

be used to demonstrate the Green's function method. An infinitely extended plate 

containing two semi-infinite cracks whose tips are separated by an uncracked ligament of 

length  is loaded by two concentrated forces  at infinity. This configuration 

corresponds to the deeply cracked limiting case  of the finite geometry 

problem shown in Figure 3.1b. For this configuration the axis is a line of symmetry. 

The boundary conditions are 

 
                                                                                 

(3.1a) 
                                                                                           

(3.1b) 

2a F
a
W
a
h
, << 1

x -

s syy xy y x a= = = >0 0            

s xy y x a= = <0 0            



                                                                                          

(3.1c) 

 

Equation (3.1a) represents the zero traction boundary condition along the crack surfaces, 

while Equations (3.1b) and (3.1c) follow from the requirement that all points lying along 

the line of symmetry have zero shear stress and equal values of displacement in the 

direction. The use of the derivative of the displacement in Equation (3.1c) eliminates 

the rigid body displacement from the elasticity problem. 

 The boundary conditions suggest that this problem is equivalent to the problem of 

a half-plane subjected to an unknown surface stress distribution shown in Figure 

3.1c, that represents the stress transferred across the uncracked ligament. Equations 

(3.1a) and (3.1b) are automatically satisfied, and  is required to produce a 

displacement profile that satisfies Equation (3.1c). As such, the exterior crack problem is 

equivalent, except for the sign of the stress distribution, to the problem of a rigid flat dye 

coming into frictionless contact with an elastic half-plane, as shown in Figure 3.1d.  

  

¶
¶
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( )p x
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Fig. 3.2 

 

The Green's function approach to this problem relies on the fundamental solution 

of the problem shown in Figure 3.2a. The concentrated force acting at point  

produces a displacement profile on the surface of the half-plane which, as shown next, 

does not satisfy Equation (3.1c). However, one can envision, as shown in Figure 3.2b, 

that a properly selected distribution of concentrated forces can produce, in the limit of 

infinite number of forces, the desired displacement profile. This limit corresponds to a 

continuous force distribution , that produces, in the interval , a net force 

. The function  along  produced by the concentratred force can be 

calculated from the analytic solution for the displacements of this problem that were 

derived in Exercise 1 of Chapter 1 
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(3.2) 

 

where  and . 

 On the surface,  

 

                                                                  

(3.3) 

 

 Differentiation of Equation (3.3) yields 

 

                                                                                  

(3.4)  

 

which, as mentioned previously, does not satisfy boundary condition (3.1c). Replacing 

the concentrated force in Equation (3.4) with the continuous distribution defined within 

the interval (-a,a), and integrating the effect of each force embedded in the distribution, 

enables boundary condition (3.1c) to be written as the singular integral equation 

 

                                                          

(3.5) 

 

 Equation (3.5) is referred to as an integral equation because the unknown function 

 appears under the integral sign. Because the unknown function appears only under 
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the integral sign, the equation is defined as being of the first kind. If the unknown 

function in an integral equation appears inside and ouside the integral sign, the integral 

equation is defined as being of the second kind. Equations of the second kind appear in 

the solution of interface crack problems and certain contact problems involving friction. 

Equation (3.5) illustrates the difference between the integral equation and the differential 

equation formulations of the boundary value problem. Differential equations are 

subjected to boundary conditions, while integral equations are boundary conditions. In 

this problem the integral equation represents the displacement boundary condition along 

the uncracked ligament. 

 Equation (3.5) does not have a unique solution because, as will be shown during 

the solution process, there are an infinite number of force distributions  that satisfy 

this equation, each corresponding to a different value of the total load. A unique solution 

is obtained by requiring the distribution to be in equilibrium with the applied force  

 
                                                                                                          

(3.6) 

 

The problem is therefore reduced to the determination of the stress distribution  that 

satisfies Equations (3.5) and (3.6).  

 
________________________________________________________________________ 
________________________________________________________________________ 

Aside: Solution of Singular Integral Equations 

 The solution of the equation  
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is given by 

 

                                                                       

(3.8) 

 

 The characteristic function  and the constant , which depend on the nature 

of the singularity at the endpoints , are listed in Table 3.1. Equation (3.7) and the 

integrals listed in Table 3.2 can be derived using complex variable techniques that are 

beyond the scope of this book. The reader interested in the derivation is referred to 

Muskhelishvili's books. 

 

       

Nature of Singularity   

Bounded at    

Singular at , 

bounded at  

  

Singular at , 

bounded at  

  

Singular at   to be determined as part of 

the solution 

Table 3.1 Characteristic Functions for Singular Integral Equation of the First Kind 

 

 Solutions that are bounded at both endpoints satisfy the consistency condition 
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(3.9) 

 

Some useful integrals that appear often in the solution of singular integral equations of 

the first kind, are tabulated in Table 3.2. 

Table 3.2 Integral Formulas 

 

In Table 3.2 the  sign in the third column corresponds to . 

 By making the substitutions ,  and , Equations (3.5) and 

(3.6) can be written in the form of Equation (3.7) 

 

                                                                                         

(3.10a) 
                                                                                                           

(3.10b) 

 

 Symmetry about the axis eliminates the possibility of a solution that is 

bounded at one end and singular at the other. Moreover, since the right hand side of 
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Equation (3.10a) is zero, the bounded solution , which follows from Equation 

(3.8), does not satisfy Equation (3.10b) 

 The nonunique solution is therefore given by 

 

                                                                                                            

(3.11) 

 

in terms of the arbitrary constant . Uniqueness is achieved by enforcing the 

equilibrium Equation (3.6), which yields 

 
                                     

(3.12) 

 

so that . The solution for the stress across the ligament is therefore 

       

                                                                                            

(3.13) 

 

As expected, the stress is square root singular near the crack tips. The stress intensity 

factor is determined as 
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This solution agrees with the one reported in Tada’s handbook. 
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Example: The Griffith Crack 

 Figure 3.3a shows the so called Griffith crack of length  loaded by a remote 

uniform tensile stress . The boundary and symmetry conditions for this Mode-I 

configuration are 
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(3.15b) 

                                                                            

(3.15c) 
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(3.15d) 
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Fig. 3.3 

 
The crack is a line across which the displacement component  is discontinuous. 

The unknown function in this problem is the crack opening displacement . This 

suggests the use of the dislocation Green's function, since it provides the necessary 

discontinuity in displacement. Consider the superposition of the stress and displacement 

fields produced by a uniform tensile stress and by a discrete dislocation placed at point 

 (with slip plane to the left of ), as shown in Figure 3.3b. Denote the fields 

produced by the uniform stress and the discrete dislocation by superscripts  and , 

respectively. The uniformly stressed plane satisfies all Equations (3.15). It follows from 

Equation (1.36b) of Chapter 1 that the discrete dislocation satisfies Equations (3.15b) and 

(3.15c), but not (3.15a), since  

 
                                                                                         

(3.16a) 
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(3.16b) 

 

Furthermore, since the slip plane is along the negative axis  the 

discontinuity in displacement can be written in terms of the Heaviside function  
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as 

 
                                                                                                     

(3.18) 

 

 The stress and displacement fields, obtained from the superposition of the 

uniform stress field and discrete dislocation, satisfy Equations (3.15b), (3.15c) and 

(3.15d). The total traction on  is 
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Just as the point force did not satisfy the displacement boundary condition along the 

uncracked ligament in the exterior crack example, the discrete dislocation does not 

satisfy the traction boundary condition along the surfaces of the Griffith crack. The 

solution was developed for the exterior crack by replacing the concentrated force with a 
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distributed force. An analogous distribution for the dislocation is called the dislocation 

density, which follows from the ideas shown schematically in Figure 3.4.  

 

 

 

 

 

Fig. 3.4 

 
As shown in Figure 3.4a, dislocation  placed at  produces a discontinuity to the 

left of the dislocation. If an additional dislocation of the same sign and magnitude  is 

placed at  the net effect is a discontinuity of magnitude  to the left of point 

, and a discontinuity of magnitude  from  to . By selecting the 

position, magnitude, and sign of additional dislocations, this procedure can be used to 

create a staircase opening of any desired shape, as shown in Figure 3.4b. Analogous to 

by
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the distributed load, the dislocation distribution is defined in terms of its density  

such that it produces, in the interval , a net Burgers vector . With respect 

to Figure 3.4c,  is equal to the difference in the gap between points  and ,   
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Equation (3.20) defines the dislocation density as 
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Replacing the discrete dislocation in Equations (3.18) and (3.19) with the dislocation 

density, and integrating the effects of each dislocation embedded in the distribution along 

the infinite interval yields 
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For the Griffith crack the dislocations are distributed along the interval , along 

which Equation 3.16a demands that 
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(3.23) 

 

 

 

 

Fig. 3.5 

As will be seen in the solution process, Equation (3.23) does not have a unique solution. 

The physical meaning of the nonuniqueness, as shown in Figure 3.5, is that an infinite 

number of traction free cracks with nonzero opening at the endpoints  satisfy 

Equation (3.23). Closure of both crack tips leads to a unique solution of Equation (3.23) 
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through the single valued displacement  conditions . These can be 

written in terms of the dislocation density through Equation (3.22b) 
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(3.24b) 

 

Equation (3.24a) is trivial, so only Equation (3.24b) is needed as a supplement to 

Equation (3.23). 

 Equations (3.23) and (3.24a) are nondimensionalized through the substitutions 

,  and  
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 Symmetry about the axis eliminates solutions bounded at one end and 

singular at the other. The bounded at both end solutions does not satisfy the consistency 

condition (3.9), since 
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which follows from the fact that the integrand is an even function. 

 The solution is therefore 
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 From Table 3.2 it follows that 
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Substituting Equation (3.28) into (3.25b) 
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The first integral on the left hand side of Equation (3.29) is equal to zero, since the 

integrand is an odd function. The second integral, on the other hand, is not equal to zero, 

since the integrand is an even function. Therefore the equation is satisfied only by . 

 The dislocation density becomes 
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The crack opening displacement is obtained as 
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(3.31) 

 

The stress intensity factor can be calculated by first evaluating the stress ahead of the 

crack along  
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Using Table 3.2 
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The stress intensity factor calculated as 
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Numerical Solution of Singular Integral Equations 

In most problems the resulting integral equations cannot be solved analytically. In 

this section a very simple and accurate method is presented that can be used to obtain 

numerical solutions of the general form of the singular integral equation of the first kind 
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ϕ
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t x

t K x t dt f x x
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1

1

1
1 1,           (3.35) 

The kernel K  that appears in Equation (3.35) is a well behaved function that takes care 

of additional boundary conditions that arise from finite geometry and/or interaction 

effects. Some examples will be described subsequently. Without loss of generality, 

consider the solution singular at both endpoints, for which the unknown function can be 

written as 
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where ϕ reg  is a bounded function. Equation (3.35) can then be written as 
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A very accurate and simple method for solving Equation (3.37) numerically was 

developed by Erdogan and Gupta. This method relies on properties of Chebychev 

polynomials of the first and second kind, which are defined, respectively, as 
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where 

                                                          t ≡ ≤ ≤cosθ θ π          0                                   (3.39a) 

                                                         x ≡ ≤ ≤cosφ φ π          0                                   (3.39b) 

 

The roots of these polynomials, obtained by setting Equations (3.38) equal to zero, are 

given by 
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and are shown schematically in Figure 3.6. 

 The method relies on the representation  
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which follows from the identities that relate the Chebychev polynomial of the first kind 

of order j  to the Chebychev polynomial of the second kind of order j −1 
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 The numerical procedure starts with the approximation of the regular part of the 

unknown function in terms of the Chebychev polynomials of the first kind 
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where the Bj  are constant coefficients. Multiplying Equation (3.41) by Bj  and summing 

on j  leads to the following representation for the first integral in Equation (3.37) 
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 The next approximation involves the second integral in Equation (3.37) 
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Equations (3.44) and (3.45) transform the singular integral equation into a system of 

algebraic equations for the unknown values of the regular part of the unknown function 
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where tk k= cosθ  and xr r= cosφ .  

 Because there are n  unknown nodal values of  ϕ reg  and only ( )n −1  equations, an 

additional condition that renders the solution unique must be supplemented to the system. 

As explained in the previous examples, the uniqueness condition is of the form 
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which is approximated as 
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 For a given problem, the solution of Equations (3.46) and (3.48) provides n  
values of ϕ reg  at points t tn1...  within the interval − < <1 1t . The values of ϕ reg  at the 

endpoints t = ±1, which for crack problems is proportional to the stress intensity factor, 

can be evaluated in terms of the calculated nodal values by using Legendre polynomial 



interpolation to find a unique polynomial that takes on the same values as ϕ reg  at points 

t tn1... . This procedure, which is described in detail by Rivlin, provides the formulas  
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Example: A Crack Perpendicular to a Bimaterial Interface 

 Figure 3.7a shows a Mode-I crack of length 2a  perpendicular to the perfectly 

bonded interface between two isotropic half-planes. The crack is in material 1. 

Henceforth superscript and subscript 1 (2) represents "of material 1 (2)". The loading 

consists of uniform pressure σ  along the crack surfaces. The distance from the left tip of 

the crack to the interface is δ . Because of its relevance to fracture of composite 

materials, the problem of calculating the stress intensity factors for this configuration has 

been addressed by several authors, including Erdogan et al., Atkinson, and Romeo and 

Ballarini.  

 This elasticity problem can be formulated using the Green's function for the edge 

dislocation with Burgers vector parallel to the interface, as shown in Figure 3.7b. The 

Airy stress functions for mediums 1  and 2 are given by Dundurs 
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where the Dundurs constants are defined by 
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If the dislocation is placed in material 2, the corresponding Airy stress functions are 

obtained by replacing α  and β  in Equations (3.50) with −α  and −β . The stress and 

displacement fields associated with these stress functions satisfy the jump conditions at 

point ( )0,ξ  and the continuous displacement and continuous traction conditions along 

the interface 
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 The relevant stress along the crack line is given by 
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Replacing the discrete dislocation with a distribution and setting the total stress equal to 

the prescribed uniform pressure leads to 
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and the single valued displacement condition 
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Note that the kernel K  appearing in the integral equation is well behaved as long as the 

left crack tip does not touch the interface ( )δ = 0 . If it does, then the term 1
y + ξ

 

becomes singular and the singularity at the left crack tip is different than square root. The 

resulting integral equation is said to have a generalized Cauchy kernel, according to 

Erdogan.  

 Equations (3.55) and (3.56) can be cast in the form of Equation (3.35) and (3.47) 
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 The discretized matrix form of the singular integral equation (3.57a) is the 

n n− ×1  matrix 
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which is made square with the supplemental discretized version of single valued 

displacement condition (3.57b) 
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 The solution of system (3.59) and (3.60), together with the Legendre formulas 

(3.49), provide the value of the regular part of the dislocation density at the crack tips, 

which are related next to the stress intensity factors. Without loss of generality, consider 

the stress intensity factor of the crack tip closest to the interface. 

 The crack opening displacement very near the tip of  a Mode-I crack is given by 

the asymptotic form derived in Chapter 2 
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The dislocation density follows from Equation (3.61) 
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Equating this last equation, as ( )r a a t= − = + →ξ 1 0 , with the numerical 

approximation 
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provides,  
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or 
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A Crack Very Close to a 
Bimaterial Interface 
This paper presents the plane elastostatics analysis of a semi-infnite crack perpendic- 
ular to a perfectly bonded bimaterial interface. Both cases of  the crack approaching 
the interface and penetrating the interface are addressed. The distance from the tip 
of the crack to the interface is 6. A singular integral equation approach is used to 
calculate the stress intensity factor, Ki, and the crack-opening displacement at the 
interface, ~, as functions of 6, the Dundurs parameters a and/3, and the stress 
intensity factor kl associated with the same crack terminating at the interface (the 
case 6 = 0). The results are presented as KI = kI61/2-~f(a, /3) and r? = Cki61-x0(o~, 
/3) where k is the strength of the stress singularity associated with 6 = O, f and ~7 
are functions calculated numerically and C is a material constant. These results can 
be used to determine the stress intensity factor and crack opening displacement of  
cracks of finite length 2a with one tip at a distance 6 from the interface for 6/a 
!. The selected results presented for a crack loaded by a uniform far-field tension in 
each half-plane show that the stress intensity factors approach their limits at a 
relatively slow rate. 

1 Introduction 

Consider the plane elastostafics problem shown in Fig. 1 (a) .  
A Mode I crack of length 2a is perpendicular to the perfectly 
bonded interface between two isotropic half-planes with shear 
moduli ~i and Poisson's ratios ui, i = 1, 2. The distance from 
the left tip of the crack to the interface is 6. Because of its 
relevance to fracture of composite materials, the problem of 
calculating the stress intensity factors for this configuration has 
been addressed by several authors (Erdogan et al., 1973; Atkin- 
son, 1975). It is well known that this elasticity problem can be 
formulated using the Green's function for the stress produced 
along the crack line by an edge dislocation. This procedure 
leads to the following singular integral equation and uniqueness 
condition: 

2#1 f f+2~b(~)[  1..~ + a + 3_____~2 1 
7r(Kl + 1) y ~ 1 - / 3  2 y +  

+ 2 ( ~ -  i )  ~(Y - ~ ) ]  , ,  ~y ~ _ - ~ 7 j a ¢  = - a = ( y )  

f ~+2ab(~)d~ = 0  6 - < y , ~ - < 6  + 2a (1) 

where or= is the stress along the crack line induced by the 
remote loading in the uncracked body, a and/3 are the Dundurs 
parameters (Dundurs, 1969) 

(9/ = 
~z(K1 + 1) - ~i(K2 + 1) 

#z(Ki + 1) + #i(x2 + 1) 

3 = ~2(K1 -- 1) - ~](K2 - 1) 
#2(K1 + 1) + #l(K2 + 1) 
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•i = 3 - 4vl for plane strain and Ki = (3 - vi) / (1 + vi) for 
plane stress. The unknown dislocation density b(~)  is defined 
in terms of the crack opening displacement [u~(()] as 

0 
b(~)  ~ - ~ [uxl. (2) 

The first equation in ( 1 ) represents the zero traction condition 
along the crack surfaces, while the second enforces single-val- 
ued displacements (both crack tips are closed). In the following, 
the loading is taken as uniform remote tension in each half- 
plane, (r (l) and a (2), such that 

l + a  o .(2) = - -  a (1) (3) 
1 - o r  

and therefore a= = a (1) in Eq. ( 1 ). 
The ratio 6/2a enters in the kernel of the singular integral 

Eq. (1) in such a way that stress intensity factor values calcu- 
lated using a direct numerical solution inevitably lose accuracy 
for 6/2a ~ 1. Indeed, the smallest ratio for which Erdogan et 
al. (1973) present results is df/2a = 0.05. Their results showed 
that as 6 ~ 0 the stress intensity factor of the crack tip closest 
to the interface approaches zero when #: > #t and infinity when 
#i > #2. These limits result from the discontinuous change in 
the order Of the stress singularity as 6 becomes equal to zero. 
As will be explained in the next section, for 6 = 0 and #: > 
#1 the stress ahead of the crack tip is of the order ktr -x with h 
< ½. This weaker singularity in effect reduces to zero, as 6 
0, the amplitude Ki of the square root singularity associated 
with 6 m 0. For #l > #2, h > ½, and similar arguments explain 
why Kt increases to infinity as 6 ~ 0. Assuming linear elastic 
fracture mechanics these limits imply that the crack reaches the 
interface at infinite load for #2 > IZl and zero load for 
/Zl > #2. 

As a first step toward the development of physically sound 
propagation criteria for interface cracks, this paper is concerned 
with determining, as functions of the elastic mismatch, the rate 
at which the square root singularity approaches the limits dis- 
cussed above. To this end the problem is formulated asymptoti- 
cally in terms of a semi-infinite crack in which the only length 
parameter is 6. 

The approach used is essentially the same as that used by 
Hutchinson et al. (1987) to study a crack very close to and 
parallel to a bimaterial interface. It relies on some relevant well- 
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Fig. 1 Finite length crack (a) approaching and (b) penetrating a bimate- 
rial interface 

known results for the asymptotic behavior of the stresses and 
crack-opening displacements in the vicinity of the tip of a crack 
impinging on a bimaterial interface. These are reviewed briefly 
in the next section. The solution of the semi-infinite crack prob- 
lem is discussed in the third section and an example of how 
the asymptotic analysis can be applied to the problem of Fig. 
1 (a)  is provided in the 4th section. The last section extends the 
method to the case of a finite crack that penetrates a distance 
6 through the interface, Fig. 1 (b) .  

2 Finite Crack Terminat ing  at the Interface 

The results of the Williams technique analysis for a crack 
terminating at the interface (6 = 0 in Fig. 1 (a ) )  show that the 

traction ahead of the crack tip is characterized by 

kl 
lim {a~) (y )}  = 2 ~  ( -Y)-X (4) 

y - * 0 -  

where superscript (i)  denotes " in  material ( i ) , "  ki is the stress 
intensity factor, and h(0 ~ k < 1) is the root of the equation 
derived by Zak and Williams (1963) 

cos (Mr) 2(/3 - a )  (1 - h) 2 + a + B 2 = - -  - -  ( 5 )  

(1 + /3 )  1 -/32' 
The loci of constant k in the cz-/3 plane are shown in Fig. 2 (a ) .  
As pointed out by Dundurs (1970), this figure clearly illustrates 
that for c~ -~ 1 the quantity k is more sensitive to the mismatch 
in the Poisson's ratios, while for c~ ~ - 1  it is more sensitive 
to the mismatch in the shear moduli. 

Another important result from the Williams analysis relates 
the crack-opening displacement ( COD ), [ u ~= ) (y) ], to the stress 
ahead of the crack, i.e., 

I ° t lim { a ~ ( - y ) }  = lim - O ~ y [ U ~ n ( Y ) l  
y - . 0  + y-*0  + 

= lim { ~Ob(y) } 
y--,O + 

where the bimaterial parameter ~0 is defined as 

2/z___.Z_~ 1 [ ~ 1  + c~ 
~0 - ( • 1 +  1 ) s i n  ( k r r ) ~ 1  - - - f ~ )  [ 1 -  

2/3(k - 1)]. 

(6) 

(7) 
Equation (6) allows the determination of the stress intensity factor 
of a crack of length 2a in terms of the dislocation density as 

kt = lim { ~Ovt~a×b(y) } (8) 
y-~O + 

in which 

b ( y )  = a- (X+V2)b(y)y~(2a  - y)1/2 

is the regular part of the dislocation density b ( y ) .  
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It is worth noting that (8) could also be derived by studying 
the behavior near the crack tip of the generalized Cauchy-type 
integral that represents the stress ~<2) uxx . 

3 Semi- inf in i te  C r a c k  Analys i s  

Consider a semi-infinite crack perpendicular to the interface 
and terminating at a distance 6 from it. The COD at a point r 
= y - 6 very close to the crack tip (r /6  ~ 1) is given by [Ux] 

Kzr ~/2, where Kt is the stress intensity factor. For r/6 > 1 
the COD approaches the one associated with the crack tip im- 
pinging on the interface (6 = 0), i.e., [u~] ~ k~r 1-~. The physical 
meaning is that since 6 is very small the COD in the far-field 
is indistinguishable from the COD of the same crack impinging 
on the interface. 

Linearity and dimensional considerations (6 is the only char- 
acteristic length) demand that 

K, 
k,61/2_x - f(oe,/3) (9) 

where f i s  a function of the Dundurs parameters only. This type 
of argument was employed by Hutchinson et al. (1987) and He 
and Hutchinson (1989). 

It should be noted that tNs last result was derived by Atkinson 
(1975) by applying the Mellin transform to the integral equation 
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and using the Wiener-Hopf technique. He showed that the stresses 
ahead of the crack are given by (using the notation in his paper) 

N 
•xx ~" EI/ZF-I/2{ ~ Ake 4-2 + O(~3s '1-4)}  ( 1 0 )  

k=l 

where the Ak are constants independent of e, al and /3 are 
material constants (not to be confused with the Dundurs param- 
eters), and s~ are the N real roots (Re(s) > 1) of the equation 

cos (Trs) + c~1 - /3(s - 1) 2 = 0. (11) 

It can be easily shown that the dominant term of the stress given 
by (10) corresponds to that produced by the stress intensity 
factor defined by relation (9), the constants A, being identified 
with the values of klf(ce,/3),  and st = 2 - k. Atkinson devel- 
oped his solution for a constant pressure loading, but did not 
present numerical results for coefficients Ak. The main contribu- 
tion of the present paper is that it presents complete results for 
these universal functions. 

As will be described in the next section, (9) provides a powerful 
tool for the asymptotic analysis of finite length cracks approaching 
a bimaterial interface. The values of the function f ( a ,  /3) were 
calculated by integrating numerically (1) for 2a = o0. The details 
of the solution procedure are given in the Appendix. 

The loci of constant f in the ce-/3 plane are shown in Fig. 
3 (a).  It is interesting to note that the sensitivity of f to  changes 
in shear moduli and Poisson ratios is qualitatively the same as 
that of the singularity coefficient k. 

4 Finite  C r a c k  V e r y  Close  to the Inter face  

The numerical scheme used for solving the singular integral 
equation for the finite crack depicted in Fig. 1 (a) becomes 
unstable when the ratio 6/2a assumes very small values. For 
these cases, an indirect method based on asymptotical analysis 
is recommended for computing the stress intensity factor. This 
approach relies on the combination of (9) and the stress inten- 
sity factor kl associated with the finite crack terminating at the 
interface (6 = 0). 

As an example, consider the case of a crack acted upon by 
a uniform remote tension field in the two connected half-planes 
according to (3). As shown in the Appendix the stress intensity 
factor kl can be represented as 

k, 
G~/~a× - h (a , / 3 ) .  (12) 

The loci of constant h in the c~-/3 plane are shown in Fig. 4. It 
is observed that the stress intensity factor for this problem is 
yet another parameter that is more sensitive to the mismatch in 
the Poisson's ratios for a -* 1, while for a ~ - 1  it is more 
sensitive to the mismatch in the shear moduli. Combining (9) 
and (12) leads to the following expression for the stress inten- 
sity factor of a crack of length 2a at a distance 6 from the 
interface: 
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Fig. 5 Numerical instability and transition to the asymptotical solution 
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o.~[~al/2 - g(o~, /3) = f(ot ,  /3)h(a,  /3); 

6/a --' O. (13) 

Selected results for the asymptotic value of the stress intensity 
factor as calculated using (13) are presented in Figs. 5 (a) and 
5 (b) for a = 4fl = +~; these values of the Dundurs parameters 
include u~ = u2 and /~2//z~ = 10 or #~/#2 = 10. The solid 
lines in these plots are the values of the stress intensity factor 
calculated through a direct numerical solution of ( 1 ) along the 
finite interval. The procedure used for these calculations is out- 
lined in the Appendix. As expected the direct solution for a 
given number of integration points breaks down as the distance 
from the crack tip to the interface assumes relatively small 
values. The asymptotic solution approaches the envelope de- 
fined by the value of 6/a at which the direct numerical solution, 
for a given value of integration points, becomes unstable. 

The most interesting results of this analysis is that the stress 
intensity factor approaches the aforementioned limits at rela- 
tively slow rates. For significant elastic mismatch, a = 4/3 = 
~, the stress intensity factor for 6/a = 0.001 is approximately 
30 percent of the nominal value associated with no interface. 
These results suggest that although the stress intensity factor for 
/z2 > #~ approaches zero, this limit is associated with distances 6 
much smaller than the plastic zone that inevitably surrounds 
the crack tip. The leading edge of the plastic zone will thus 
reach the interface at a finite load. Perhaps more importantly, 
cracks in typical engineering materials will have extremely 
small 6 values that will invalidate a continuum mechanics for- 
mulation. 

5 Finite Crack Extending Through the Interface 
The asymptotical technique described in the previous sections 

can be easily extended to other interface crack problems. The 
natural extension of the previous formulation is to a finite crack 
of length 2l = 2 (a + b) that has extended beyond the interface 
a distance 6 = 2b ~ 1 (Fig. 1 (b)).  This problem can be reduced 
to a set of coupled singular integral equations using the same 
Green's function approach that is used to derive (1) (Erdogan 

and Biricikoglu, 1973). These equations are written symboli- 
cally in terms of the dislocation densities b(°(~) (i = 1, 2): 

Ai b(l)(~)Ktid~ + A2 b(2)(~)K2id~ = -or (i~ 
- 2 b  

(i = 1, 2) 

£° £ b(l)(~)d~ + b(2)(()d~ = 0 (14) 
2b 

where K~j (i, j = 1, 2) are Cauchy-type kernels. The first two 
Eqs. (14) represent the traction boundary conditions, while the 
third enforces single-valued displacements. The condition on 
the dislocation density required to insure compatibility at the 
interface is given by 

lim b(2 ) (y ) lb ( l ) ( - y )  = F(a , /3 ,  I.Z) (15) 
y--if) + 

where 

(1 + o~)/3 + (a  - / 3 )  
× (1 - / 3 ) ( - 1  + 4/z - 2~ 2) 

F ( a , / 3 , # )  = - ( 1 - / 3 2  ) cos(#Tr) (16) 
(1 + a ) ( - 1  + 2 /3 -2 /3# )  

and/z is the power of the stress singularity, which satisfies the 
characteristic equation 

(1 -- /32)(1 + COS z pTr) 

+ 212c~/3 -- 1 -- (2c~/3 -- /32) COS #Tr] + 4#(2 - #) 

[(a  - / 3 )z (1  - /~)2 _ a/3 + / 3 ( a  - ,6) cos #Tr] = 0. 

The loci of constant/z are plotted in Fig. 2(b).  
Again a direct solution of Eqs. (14) is inadequate for very 

small b/a  ratios and an alternative approach is furnished by the 
asymptotical analysis. The reference problem is still the finite 
crack of length 21 terminating at the interface. The semi-infinite 
analysis on the other hand has to be redefined, since the crack 
tip is now located beyond the interface at a distance 6 from it. 
As before, the far-field COD has to approach the one associated 
with no penetration, [u,] cc k :  1-~, and in the vicinity of the 
crack tip the COD is given by [u,] cc K1r 1/2. However, an 
additional requirement is that the COD at the interface be of 
the order r ~-u. Equation (9) still applies withf(ce,/3) replaced 
by the new function f * ( a , / 3 )  whose values are computed by 
solving numerically the proper set of integral equations (see 
Appendix); the loci of this function in the a-/3 plane are plotted 
in Fig. 3(b).  

Combining (9) and (12) leads to the asymptotical expression 
of the stress intensity factor of a finite crack of length 21 the 
has penetrated in material 2 by the distance 6 = 2b ~ l 

K, 
amq.7l .~  = g*(a, /3) 

[ 2c \t/2-~ 

=  1--77c) 

where 

c = b/a.  

The predictions of Eq. (17) are valid in the limit 6/l  ~ O. 
Figures 6 and 7 show the convergence of the nondimensional 
stress intensity factor values found by direct numerical integra- 
tion to the asymptotic solution given by (17) for the two mate- 
rial combinations already used in the previous sections, a = _+ 

= 4/3. Note that the for the case ce = +~ = 4/3, which 
corresponds to k = 0.347, the rate of convergence is much 
slower than for a = - ~  = 4/3 (k = 0.755). 

Note that the asymptotic analysis can be used to compute not 
only stress intensity factors but also other quantities such as the 
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crack-opening displacement at the interface. In fact, for a semi- 
infinite crack the COD at the interface, r/, is given by 

l + X l  
-- - -  k / 6 1 - X ~ ( o t , / 3 )  ( 1 8 )  

2/Zl 

where ~ is a function of the Dundurs parameters whose loci are 
shown in Fig. 3(b) .  The asymptotic expression of the crack- 
opening displacement at the interface for the finite crack in Fig. 
1 (b) is then given by 

rlf = - ~ q b l 6  ~ h(a,/3)~(a,/3) 6/1~ 0 (19) 

where 

a(I)(Ki + 1) 

21zi 

6 Conclusions  
The numerical schemes that are used to solve integral equa- 

tions describing the elastostatics problems of finite length cracks 
close to a bimaterial interface are not accurate when the relative 
distance 6 from the •crack tip to the interface becomes very 
small. An asymptotic analysis has been developed that provides 
accurate stress intensity factors for such problems and gives 
insight into their rate of change as 6 -* 0. For the case of a 
crack approaching or penetrating a bimaterial interface, it has 
been shown that the stress intensity factor at the leading crack 
tip approaches its limiting value at a slow rate. These results 
suggest that propagation criteria for such problems are associ- 
ated with nonlinear processes. The technique presented in this 
paper can be used to solve a class of problems in which a small 
parameter leads to an unstable direct numerical solution of the 
governing equations. 
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Let 

A P P E N D I X  

2/zt 
Ai - (i = 1, 2) 

It(1 + ~ )  

a + /3  2 2 ( a - / 3 )  1 + a  
M =  1 _ / 3  z ,  N 1 + / 3  ; S =  1 - / 3 2 '  

p = a - / 3  2 2(a-/3___________). T =  1 - a  
1 - / 3  z ;  Q =  1 - / 3  ' 1 - f l  2; 

1 M {(y - ~ )N .  
K i i ( ~ ,  y) - + - -  + 

y - ~  y + ~  

K,2(~, y ) =  S I - - - L - -  2/3 ~-----~-----] ' 
Y ~ (3' ~)2 , 

(y + ~)3 , 

K21(~'Y) = T[---~---+ 2 / 3 - - - ~ 1  ~ (Y 

K=(~, y) - ~ P ~(Y - ~)Q (A1) 
y _ ~ y + ~ (y + ~ ) 3  

The following procedures were used to solve the integral equa- 
tions numerically. 

Crack of  Length 2a at Distance 5 From the Interface 
(3  -> O) 
The integral equations for this case are 

f 
6 + 2 a  

a ,  b(~)Kll(~,  y)d{ = -~r iI) 
o 6  

f ~+2. b ( O d ( = O  6 - < y , ~ - < 6 + 2 a  

The case 6 = 0 corresponds to a crack impinging on the inter- 
face. For the numerical computation these equations are ren- 
dered in nondimensional form and normalized in the interval 
[ - 1 ,  1] by means of the transformations 
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t = { - ( a + 6 ) . ,  { = y - ( a + 6 ) ;  
a a 

a(1)(~1 + 1) 
6 -  2#1 

The nondimensional stress intensity factor at the crack tip clos- 
est to the interface is given by 

where 

and 

kt ~1 + 1 0b(-1); 6 = 0 (A3) 
h ( a ,  /3) = a(l)x[TrTra~ 21 z, 

K, = b ( - 1 ) ;  6 > 0 (A4) 
g ( a , / 3 )  = cr ( l )~a l /2  

2~1 1 1 + a 
tp . . . .  [1 - 2/3(k - 1)] 

~1 + 1 sin (X~r) 1 -/3~ 

b ( t )  = b( t ) (1  + t)x(1 - t) ''2 

is the regular part of the dislocation density (X = ½ when 6 > 
0). For the numerical solution of (A1),  two methods were 
compared./~ (t) in the first method is represented as a truncated 
series of Jacobi polynomials (Erdogan et al., 1973), while in the 
second method it is expressed in terms of piecewise quadratic 
polynomials (Miller and Keer, 1985). The results shown a 
faster convergence for the latter method for which 64 integration 
points were necessary to capture three significant figures, versus 
400 integration points necessary for the first method. 

Semi-infinite Crack Whose Tip is at Distance 6 From 
the Interface 

The singular integral equation is the same as the first (A2) 
except that the upper limit 2a is replaced with oo. The unknown 
dislocation density is represented in real coordinates as 

b(~)  = 2 ~ ( (  - 6)'/2~ x b ( ( )  + w(~)~b -~ (A5) 

with the additional condition l im/~(()  = 0 replacing the crack 

closure condition that appears in the second Eq. (A2).  As dis- 
cussed by Rubinstein (1992), this representation stabilizes the 
singular integral equation, w(~) is a function of the type 

With the change of variables ~ = 26/(1 - t ) ,  y = 26/(1 - ~) 
(A4) is normalized in the interval [ , 1 ,  1]. 

By extracting the dominant term of the singularity of the 
resulting equation, the nondimensional ratio of the local and 
far-field stress intensity factors is determined as 

f ( a , / 3 )  = K~ 6×_~n = /~(-1) .  ( a 7 )  
k, 

Crack of Length 2a Extending Through the Interface 
by 6 ( ~  -> 0)  

The set of coupled singular integral equations is given in (14) 
with A~ and K 0 defined in (A1).  The compatibility condition at 
the interface is given in (15). The normalized nondimensional 

form of (14) and (15) is attained by means of the transforma- 
tions 

tl = ~ - a , '  ¢1 = y - a , '  ~bl = -  or(l)(1 + Kl),. 

a a 2/z1 

t2 = - ~ + b .  ~2 Y + b (/)2 O" (2)(1 + K2) - - ,  = - - - ;  = - 
b b 2/.z 2 

that lead to the following representation of the dislocation densi- 
ties: 

b(l)(tl)  = /~'(1)(ti)(1 - ti)-l/2(1 + ti)~; 

b(2)(t2) = b(Z)(t2)(1 - h)-1/2(1 + tz) u (A8) 

where 

c = b / a .  

The nondimensional stress intensity factor at the crack tip 
closer to the interface is then given by 

K, 
g*(a , / 3 )  - o.(i)xf- ~ 

_ 2u--~bll ~/1 2c+ c 11 _+ aa b(z)(1)i (A9) 

Semi-infinite Crack Whose Tip is at Distance 8 Beyond 
the Interface 

The equations for this case are similar to the first two Eqs. 
(14) with the upper limit 2a replaced with oo, and Eq. (15). 
The third Eq. (14) is replaced by the following condition that 
stabilizes the integral equations and insures uniqueness of the 
solution: 

lira ff t)(~) = 0. 

The dislocation density functions have the form 

kl 1 [•1 + 1/~(,)(() + Wl(()[//_l ] 
b(')(~) = ,~7 (~ + 6)~-"(" L 2ui 

k~ K2 + 1 /~(2)(~) 61/2+"-x (A10) 
b(=)({) = 2 ~  2#2 ( -{)~ ' (6  + ~)1/2 

where w~({) is a function of the type 
. = + 1 - i  

wl(<~)  = sm LT / ( A l l )  

The normalized form of the set of equations is attained through 
the change of variables 

tl = ~ -  6 y -  6 2~ + 6 2y + 6 
~+----6; ¢ ' = - - ; y + 6  t 2 = - - ; 6  ¢ 2 = - - f i  

By extracting the dominant term of the crack-tip singularity, 
the nondimensional ratio of the local and far-field stress inten- 
sity factor is then given by 

f * ( a , / 3 )  = K/6x_1/2 = ffz)(1).  (A12) 
k, 

The crack-opening displacement at the interface is given by 

r? = - B2 (~ )d~  = ~ B2(t2)dt2 
6 1 

_ 1 + Kl k~61_X~(oz,/3) (A13) 
2#~ 
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