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Atronomer Royal George Biddell Airy (1801-1892)

Lucasian Professor at Cambridge
President of the Royal Society of London

Scientific contributions include:

‘Improved orbital theory of Venus and the Moon.
*Computation of the density of the earth by swinging a pendulum
at the top and the bottom of a deep mine.

*Fluid dynamics: theories of waves and tides.

*A mathematical study of the rainbow.



Siv George Gabriel Stokes

SIR GEORGE BIDDELL ATRY

George Gabriel Stokes

George Biddell Airy (1801-1892) Subsequently sent Maxwell recommended publicat%on
. the paper to James Clerk Maxwell And also named the stress function
presented his paper . :
and someone else for review. After Airy. But he also

to the Royal Society in 1862 . . :
raised some issues with

Airy’s solutions and suggested
improvements that were discussed
in a series of letters between himself,
Stokes and Airy.



AAP=0

Airy’s original paper presented solutions for the stresses
in a finite rectangular beam treated as a two-dimensional
- problem of elasticity.

Why would an astronomer be concerned with the elasticity of plates and beams?

Note that the deflection, w, of a plate is governed by

AAw=¢q/D

where g is the transverse loading distribution and D is the flexural rigidity.

At the beginning of the 1860’s Airy built for the Observatory a new
large meridian line with a telescope having an 8-inch object lens. The weight
of the lens, if not accounted for, can cause inadmissible errors in observations,
such as the 2 arc seconds associated with the Paris Observatory.
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Fundamental Solutions of the Plane Problem
Introduction to the Concept of Dislocation

Two analytical solutions that are useful in formulating boundary value problems
involving cracks are the point force and edge dislocation in an infinitely extended
medium. For simplicity the discussion is restricted to the plane problems shown in Figure
3: the concentrated force per unit thickness F (Figure 3a) and the discrete edge
dislocation b (Figure 3b), which is represented by the symbol L. The extension to three
dimensional problems is described briefly in Chapter 3. Because they are associated with
a concentrated action at a point, the force and dislocation solutions are the Green's
functions for the plane problem of elasticity. While the physical meaning of force is clear,
the concept of dislocation may not be familiar to the reader and thus warrants an
explanation. Although dislocations were not experimentally observed in materials until
the 1950's, the concept of the dislocation was introduced and developed in elasticity

theory by Volterra and Timpe in the early 1900's.



Fig. 3 Point force and dislocation representations
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Fig. 4 Climbing edge dislocation
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Fig. 5 Gliding edge disclocation

Consider first the so called climbing edge dislocation shown in Figure 4a. This
configuration, which corresponds to =z in Figure 3, denotes the procedure shown in
Figures 4b and 4d. A semi-infinite cut, defined as the slip plane, is made along the
negative x —axis. The slip plane terminates at the z-—axis, which is defined as the
dislocation line. The upper and lower surfaces of this cut are displaced relative to each

other in the y —direction by a distance b, and a rigid plate is inserted and welded to these

surfaces. The typical crystallographic interpretation of this procedure is included in



Figures 4c and 4e, which represent lattice models of the elastic continuum. Figure 4c
shows a perfect lattice consisting of 30 numbered atoms which comprise the
neighborhood of the dislocation line. A circuit starting out at atom 4 comprised of ten
consecutive steps, two in the positive y —direction, three in the positive x —direction, two
in the negative y —direction, and finally three in the negative x —direction, leads back to
atom 4. Figure 4e shows the configuration that results when an extra horizontal sheet of
atoms is inserted between atom pairs 3-4, 9-10, and 15-16. Starting out at atom 4 and

repeating the number, direction, and order of steps as in Figure 4c, this time crossing the

slip plane, leads to atom 5. The Burgers vector b, shown in Figure 4e, represents the
vector perpendicular to the slip plane that is required to close the gap produced by the

extra sheet. For this configuration the magnitude of the Burgers vector is b, and its

direction is parallel to the dislocation line. Define the range of the polar angle as
- < @ = . Then the Burgers vector introduces, as shown in Figure 4d, a discontinuous
tangential displacement component along the negative x-axis, given by

ug(—fr) - ug(ﬂ) =b .

v

The gliding edge dislocation b_ is shown in Figure 5. For this case after the cut is
made, the upper and lower surfaces are displaced relative to each other in the
x —direction by a distance b_, and then welded. The physical interpretation for this case is
shown in Figures 5c and Se. The row of atoms 1-7-13 are displaced relative to row 19-25
by a distance b_in the positive x —direction. This procedure renders row 3-9-15 an extra
half plane of atoms inserted between rows 2-8-14 and 4-10-16. Any circuit starting at
atom 2 that crosses the slip plane ends up at atom 1, and the Burgers vector, which is

perpendicular to the dislocation line, has a component in the x —direction whose



magnitude is b . For this configuration the radial displacement component along the

negative x —axis is, for -z < 6 <, given by ur(—Jr) - ur(fr) =b,.

Note the similarity between the gliding and climbing edge dislocations. If atoms
19 and 25 are removed in Figure 52 and the sketch is rotated by 90 degrees counter
clockwise, the climbing edge dislocation is recovered, atoms 3, 9 and 15 representing the
extra sheet. In other words, for a fixed coordinate system, the only difference between the
climbing edge dislocation and the gliding edge dislocation is the orientation of the extra

half-plane, the first being inserted horizontally, the latter vertically. If the medium

contains a mixed dislocation at a point, then the magnitude of the Burgers vector is given

by b=./b] +by2.
Derivation of the form of the stress fields

The stress, strain, and displacement fields associated with the point force and
dislocation are derived next. Most books on dislocations that derive the solution to the
edge dislocation problems reproduce the analysis based on Michell's general
representation of the Airy stress function. The derivation presented here for both the edge
dislocation and concentrated force problems relies on linearity and dimensional analysis
to determine the form of the stress fields. The only relevant parameters in these elasticity
problems besides the magnitude of the action (P or b) are r,6,v and E. Since the

problems are linear the stress is proportional to the magnitude of the action

o «F (18a)

o xb (18b)



where the superscripts "b" and "F" are labels for the fields associated with the
dislocation and point force, respectively. For the force the units of stress result by simply
dividing Equation (18a) by 7. For the dislocation, on the other hand, only £ can provide
units of stress. Multiplying Equation (18b) by E leads to dimensional inconsistency,
which can be remedied by dividing the resulting equation by the only remaining available

length parameter 7. Consequently

o’ =§gl.j(z9,v) (19a)

o =251 (0.v) (19b)
r

This argument has essentially provided the » —dependence of the stress fields, and has

reduced the problem to the determination of functions f; and g;. Note that both stress
1 . : . : .

fields possess a — singularity. By absorbing the numerators of Equations (19) into
r

common functions 4, which may depend on 6, E, v,b, F', but not on r, the solutions to

both problems can be expressed as

(20)

The distinction between the point force and dislocation is made by requiring different
force and displacement jump conditions on a contour surrounding their point of

application. The force, as shown in Figure 6a, is equilibriated by the tractions acting on



any closed contour surrounding its point of application. Moreover, the displacements are
continuous across any line L. For the dislocation, as shown in Figure 6b, the tractions are
self-equilibriated, and the magnitudes of the radial and tangential displacement

discontinuities across the slip plane L are equal to b, and b,

Equilibrium and compatibility provide three equations for the three unknown 4,

Jo,, O, —059+l Jdo., _

T4 2la
or r r d0 (212)
190y 590, 9% _ (21b)
r d0 r
7 19 15
—+-——+—5—7|lo,+0,)=0 21c
0')’/,2 7"07/" rz 0762)( " HH) ( )

With Equations (20), Equations (21) are transformed into the ordinary differential

equations

dA

A+ Dt o (222)

Am+% _0 (22b)
d2

A, + Agg + ﬁ(Arr + Aae) =0 (22¢)

The solution of the last equation is



A, +A,=ccos0+c,sinb (23)

Differentiating Equation (22a) and adding the result to Equation (22b) leads to

2
A
u+A

- 24
dé =0 @4

whose solution, together with Equations (22a) and (23), provides

A,=ccosb+c,sinf (25a)
A,y =—c,sin 0+c, cost (25b)
4, =(c;-c,)cos0+(c, +¢,)sinf (25c¢)

The unknown constants ¢,,c,,c;,,c, for the force and for the dislocation are determined
next using the previously discussed force and displacement jump conditions.
The (Symmetric Problem )

Without loss of generality the solution is developed to the problem which is
"symmetric" with respect to the x —axis, which corresponds to = 7 in Figures 3 and 6.
That is, the physics is invariant to a reflection about the x-axis The word symmetric is in
quotes because while certain physical quantities are symmetric about the x —axis, others
are asymmetric. The positive stress and displacement components at =6 are shown in

solid arrows in Figure 7. The dashed arrows indicate the required directions of o, and u,

for the picture to be symmetric about the x —axis. This symmetry requires



o, (+0)=0,(-0) (262)

O,5(+6) = 0,,(-0) (26b)
0,,(+0) = -0,,(-0) (26c¢)
u,(+6) = u.(-0) (26d)
u,(+6) = —u,(-0) (26e)

which make ¢, =¢, = 0.
Consider a circular free body diagram of unit radius surrounding the point of
action, as shown in Figure 6a. For = 7, the net force per unit thickness resulting from

the tractions along the circular boundary satisfies the equilibrium equations

- F_ for the force

fﬂ(arr cosf - 0,, sin 9)”‘” = £ +f:z(A” cosf— 4, sin ﬁ)dﬁ - {O for the dislocation

(27)
By substituting Equation (25a) and Equation (25¢) into Equation (27) if follows that
( ) F_ for the force ’8
M2 7%)70 for the dislocation (28)

Equation (28) provides the first relation between the unknown constants ¢, and

¢; =c¢, —c,. The second equation, which specifies the displacement discontinuity,



requires the calculation of the displacements, which can be determined through the strain-

displacement relations and Hooke's Law

3
ST PR €9 T (292)
ar  2u 4
1 ( du 1 3-x
R O
c, =l(l%+%_ﬁ) -l (29¢)
2\r d80 or r 2u
Integrating ¢, and &,
3- df (@
ur=icos61nr cS—( K)(cz+cs) +M (30a)
2u 4 46

1 . 3- 3-

u, =—sinf cz—( K)(cz+cs)—lnr CS—( K)(cz+cs) - 1(6)+ g(r) (30b)
2u 4 4

where the functions of integration f,g are determined through the equation that results

from substitution of Equations (30) into Equation (29c)

af I c, +¢ dg
W+f—ﬂsm0[2cz+(%)(l(—l)]=g—”; 1)



The left hand side of Equation (31) is a function of &, while the right hand side is a
function of . Therefore both sides are equal to a constant k. Solving the right hand side

of Equation (31) we obtain

g(r) =k+owr (32)

The contribution from g to u, and u_ represents, as discussed previously, a rigid body
translation and rigid body rotation. Setting k = w =0, the general solution for f is the

addition of the homogeneous and particular solutions

f=cssinf+c, cost9+0(c8 sinf + ¢, cosﬁ) (33)

where the homogeneous solution ¢, sin 6+ ¢, cos 6 represents a rigid body translation that

is also set equal to zero. Substitution of Equation (33) into Equation (31) provides ¢, =0

C, + ¢

and ¢, = —4L [2c2 + ( )(K’ - 1)] The final expressions for the displacements
7

components become

(Hsin 6 - cos 49) (34a)

1 3-x 1
u, =ﬂcost9lnr[c5 —( Z )(02 +c5)} +El262 +(C2 ;cS)(K—l)

U, = Lsin@{c2 - (3;'()(% +cs)—lnr[cs - (3;'() (c, +c5)”+l[2c2 +(CZ ;-CS)(K—I)]HCOSH

2u 4u

I

(34b)



As expected, the displacement solutions include multivalued functions, namely &sin &
and Hcos#. As mentioned previously, the slip plane can be placed along f= 7 by
placing the branch cut along the negative x —axis, that is, defining the range -7 < 0= 7.
If it is desired to place the slip plane along g = 0, then the polar angle should be defined
in the range 0 < 0 <. Both choices lead to a continuous radial displacement component,
ie., ur(ﬂ) - ur(—ir) = u,,(O) - ur(2fr) =0, and a discontinuous tangential component given,

for the respective definitions of the polar angle, by

() — 10y (= ) = 1, (0) = 1, () = ﬁ[z . ( ;CS)(K_ l)} _

0 for the force
by for the disloc@'gan

For the dislocation with slip plane placed along the negative x-axis (the gap between the

upper (+) and lower -) surfaces is given by

g(x)=u;(x)-u,(x)= —ug(ﬂ) + uﬁ(—ﬂ) = b,), Equations (27) and (35) provide

2ub,
C,=C = 36a
2 ° JT(K+1) (362)
2ub, cos®
o, .=0,,= z 36b
T k1) r (36b)
2
o, =2 sinf (36¢)




u, = L)[(K + 1)(900849— (K - l)sin AInr —sin 6‘]+ b—yksiné’ (36d)

27(K +1 27(x +1)
u =L[(K+1)6’sint9+(l(—1)cost91nr—cosH]—LKsiné‘ (36¢)
" 2a(k +1) 27 +1)

The last term in each of Equations (36d) and (36¢) represents a rigid body translation, and
can be omitted. As expected, the hoop stress along the positive x —axis is tensile.

If the slip plane is desired along the positive x —axis, then the displacement
discontinuity should be prescribed as ug(O) - u5(2n) = b,. This choice will lead to stress
and displacement components equal to the negative of those given by Equations (36), and

as expected, positive hoop stress along the negative x — axis.

For the point force we find

_ (/(—1) _ (/(+3)
cz_zﬂ(K+1)F CS__2J[(K+1)F (372)

(x+3)F cosé

= 37b
" 2Jr(/( + 1) r (370)
(x-1)F cos®
= 37
Too 2Jr(1( + 1) r (37¢)
o, - (x-1)F sin@ (37d)
2;r(1( + 1) r
_ . . 37
u, —277!1 (K " 1) [K sinfInr +sin 19] (37e)
F [—Kcosﬁln r] (371)

= 2au(xc +1)



Plots of the stress components produced by the dislocation and point force are

shown in Figures 8 and 9.



Exercise 1
Derive expressions for the components of stress and displacement associated with a
concentrated force applied at the surface of a half-plane, as shown in the figure.

Solution:

P . .
u, = _E[(’( - l)Hcosﬁ— (K + l)sm Olnr —sin 0]

7

P )
u = —m[(l( - 1)6s1n(9+ (1( + l)cos Olnr - cosﬁ]

7 X




Exercise 2
Derive expressions for the stress and displacement fields produced by a gliding edge

dislocation.



THE USE OF FUNDAMENTAL SINGULAR SOLUTIONS OF ELASTICITY TO
SOLVE CRACK PROBLEMS

This chapter presents several examples that illustrate how the previously
derived discrete dislocation and point force solutions can be used to formulate the
solutions of plane boundary value problems involving cracks. The approach
involves the use of distributed dislocations and forces, and is referred to as the
Green's function method, reduces elasticity problems to a system of one dimensional
singular integral equations. A brief description of how the method can be used to
formulate three dimensional problems is provided in the Appendix.

Many mathematical techniques are available to solve the field equations
of elasticity. The Green's function method is presented in this book because the
approach and the resulting equations have a clear physical interpretation. The
discussion also emphasizes that even for relatively simple configurations,
sophisticated mathematics is needed to derive explicit solutions for crack opening
displacements and stress intensity factors. The method relies on the knowledge of a
fundamental solution that satisfies as many of the boundary conditions of the
problem, and provides the necessary force or displacement discontinuity. Replacing
the concentrated action with a continuous distribution enables one to write the
remaining boundary conditions as a system of integral equations.

Paramount to the development of solutions using the Green's function method is
the understanding of boundary and symmetry conditions. As will be shown
through several examples, this understanding guides the formulation of a physically
motivated superposition scheme.

Example: The Exterior Crack



Fig. 3.1 The exterior crack problem
The exterior crack shown in Figure 3.1a is perhaps the simplest crack problem that can
be used to demonstrate the Green's function method. An infinitely extended plate
containing two semi-infinite cracks whose tips are separated by an uncracked ligament of

length 2a is loaded by two concentrated forces F at infinity. This configuration

corresponds to the deeply cracked limiting case %,%<<1 of the finite geometry

problem shown in Figure 3.1b. For this configuration the x —axis is a line of symmetry.

The boundary conditions are

c,=0,=0 y=0 |x|>a

(3.1a)

c,=0 y=0 |x|<a

(3.1b)



(3.1¢)

Equation (3.1a) represents the zero traction boundary condition along the crack surfaces,
while Equations (3.1b) and (3.1c) follow from the requirement that all points lying along
the line of symmetry have zero shear stress and equal values of displacement in the
vy —direction. The use of the derivative of the displacement in Equation (3.1c) eliminates
the rigid body displacement from the elasticity problem.

The boundary conditions suggest that this problem is equivalent to the problem of

a half-plane subjected to an unknown surface stress distribution p(x) shown in Figure

3.1c, that represents the stress transferred across the uncracked ligament. Equations
(3.1a) and (3.1b) are automatically satisfied, and p(x) is required to produce a
displacement profile that satisfies Equation (3.1c). As such, the exterior crack problem is
equivalent, except for the sign of the stress distribution, to the problem of a rigid flat dye

coming into frictionless contact with an elastic half-plane, as shown in Figure 3.1d.
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Fig. 3.2

The Green's function approach to this problem relies on the fundamental solution
of the problem shown in Figure 3.2a. The concentrated force acting at point x =¢&
produces a displacement profile on the surface of the half-plane which, as shown next,
does not satisfy Equation (3.1c). However, one can envision, as shown in Figure 3.2b,
that a properly selected distribution of concentrated forces can produce, in the limit of

infinite number of forces, the desired displacement profile. This limit corresponds to a

continuous force distribution p(f), that produces, in the interval d&, a net force

o
dP = p(&)d&. The function gy along y =0 produced by the concentratred force can be

calculated from the analytic solution for the displacements of this problem that were

derived in Exercise 1 of Chapter 1



0,

P . .
u, = —@[(/{—1)91 cosd, —(k +1)sin 6, Inr; —smﬁl]

(3.2)

where 5 = /(x— &)’ +»* and 6, = tan‘l(x—_g) :
y

On the surface, 6, = g

um(@ ——u,(y= O)=£[(l{+l)lni’1 +1]

(3.3)
Differentiation of Equation (3.3) yields
% _ (K' + 1) P y=0
o 4mu (x - §)
(3.4)

which, as mentioned previously, does not satisfy boundary condition (3.1c). Replacing
the concentrated force in Equation (3.4) with the continuous distribution defined within
the interval (-a,a), and integrating the effect of each force embedded in the distribution,

enables boundary condition (3.1c¢) to be written as the singular integral equation

ou 1) ¢a d
Ey _(K+)j_ap(§)§=0 y=0 W<a

4mu (x - §)

(3.5)

Equation (3.5) is referred to as an integral equation because the unknown function

p(f) appears under the integral sign. Because the unknown function appears only under



the integral sign, the equation is defined as being of the first kind. If the unknown
function in an integral equation appears inside and ouside the integral sign, the integral
equation is defined as being of the second kind. Equations of the second kind appear in
the solution of interface crack problems and certain contact problems involving friction.
Equation (3.5) illustrates the difference between the integral equation and the differential
equation formulations of the boundary value problem. Differential equations are
subjected to boundary conditions, while integral equations are boundary conditions. In
this problem the integral equation represents the displacement boundary condition along
the uncracked ligament.

Equation (3.5) does not have a unique solution because, as will be shown during
the solution process, there are an infinite number of force distributions p(f) that satisfy
this equation, each corresponding to a different value of the total load. A unique solution

is obtained by requiring the distribution to be in equilibrium with the applied force F

F+ j p(&)dé=0

(3.6)

The problem is therefore reduced to the determination of the stress distribution p(f) that

satisfies Equations (3.5) and (3.6).

Aside: Solution of Singular Integral Equations

The solution of the equation

=f(x) -l<x<l1

(3.7)



is given by

(3.8)

The characteristic function W(x) and the constant C, which depend on the nature

of the singularity at the endpoints x = +1, are listed in Table 3.1. Equation (3.7) and the
integrals listed in Table 3.2 can be derived using complex variable techniques that are

beyond the scope of this book. The reader interested in the derivation is referred to

Muskhelishvili's books.

=
—~~

=
S~

Nature of Singularity C
Bounded at x = +1 1-x° 0
Singular at x = -1, I-x 0

I+x
bounded at x = +1
Singular at x = +1, T+x 0
I-x
bounded at x = -1
1
Singular at x = +1 - to be determined as part of
- X

the solution

Table 3.1 Characteristic Functions for Singular Integral Equation of the First Kind

Solutions that are bounded at both endpoints satisfy the consistency condition




(3.9)

Some useful integrals that appear often in the solution of singular integral equations of
the first kind, are tabulated in Table 3.2.

Table 3.2 Integral Formulas

Integral _l<x<l x> 1
f,(g_x;{ﬁ 0 * xf_l
f,(g_j)% 7 ”i. ;x_l
Jll(g_f)% = x(”i szx—lj

In Table 3.2 the +(—) sign in the third column corresponds to x < —1 (x>1).

S

By making the substitutions 7= 2, s=> and plt)= % p(t), Equations (3.5) and
a

a

(3.6) can be written in the form of Equation (3.7)

L pe)de
j_l(s_t) -0 s <1
(3.10a)
fl pt)dr =1
(3.10b)

Symmetry about the y—axis eliminates the possibility of a solution that is

bounded at one end and singular at the other. Moreover, since the right hand side of



Equation (3.10a) is zero, the bounded solution p(x)=0, which follows from Equation

(3.8), does not satisfy Equation (3.10b)

The nonunique solution is therefore given by

(3.11)

in terms of the arbitrary constant C. Uniqueness is achieved by enforcing the

equilibrium Equation (3.6), which yields

J:llf?(f)df = C(sin’l(l) - sin’l(—l)) =]

(3.12)
so that C = —l. The solution for the stress across the ligament is therefore
V4
0y =-Pl¥)=——
ma® —x*
(3.13)

As expected, the stress is square root singular near the crack tips. The stress intensity

factor is determined as

K, = limHa,[,ﬂﬁ(a - x)ayy] =lim__ J27(a—x) ﬂ\/(a +1):)(a =) = \/%

(3.14)

This solution agrees with the one reported in Tada’s handbook.



Example: The Griffith Crack
Figure 3.3a shows the so called Griffith crack of length 2a loaded by a remote
uniform tensile stress o”. The boundary and symmetry conditions for this Mode-I

configuration are

o,=0 y=0 |x|<a

w
(3.15a)
o,=0 y=0 |x|<a
(3.15b)
_ =0 =0
O, —E— y= |x|>a
(3.15¢)

o0
o, >0 asy—>mo

(3.15d)



Fig. 3.3

The crack is a line across which the displacement component u, 1s discontinuous.

The unknown function in this problem is the crack opening displacement g(x). This

suggests the use of the dislocation Green's function, since it provides the necessary
discontinuity in displacement. Consider the superposition of the stress and displacement
fields produced by a uniform tensile stress and by a discrete dislocation placed at point
x =¢ (with slip plane to the left of x = &), as shown in Figure 3.3b. Denote the fields
produced by the uniform stress and the discrete dislocation by superscripts c and d,
respectively. The uniformly stressed plane satisfies all Equations (3.15). It follows from
Equation (1.36b) of Chapter 1 that the discrete dislocation satisfies Equations (3.15b) and

(3.15c¢), but not (3.15a), since

(3.16a)



(3.16b)

Furthermore, since the slip plane is along the negative x—axis (-7 <6@<7x) the

discontinuity in displacement can be written in terms of the Heaviside function

0 <0
H(t) - {1 t>0
(3.17)
as
¢'(¥)= b, H(£-x)
(3.18)

The stress and displacement fields, obtained from the superposition of the

uniform stress field and discrete dislocation, satisfy Equations (3.15b), (3.15¢) and

(3.15d). The total traction on y =0 is

(3.19)

Just as the point force did not satisfy the displacement boundary condition along the
uncracked ligament in the exterior crack example, the discrete dislocation does not
satisfy the traction boundary condition along the surfaces of the Griffith crack. The

solution was developed for the exterior crack by replacing the concentrated force with a



distributed force. An analogous distribution for the dislocation is called the dislocation

density, which follows from the ideas shown schematically in Figure 3.4.

9(%)
G~ ’
‘ ,,,,, _ I e S U3
5 s :
e T e = - [y
= C/](?)df
Fig. 3.4

As shown in Figure 3.4a, dislocation b; placed at x = &, produces a discontinuity to the
left of the dislocation. If an additional dislocation of the same sign and magnitude bj is
placed at x = &, the net effect is a discontinuity of magnitude b; + bf, to the left of point

x=¢,, and a discontinuity of magnitude b; from x=¢&, to x=¢,. By selecting the

position, magnitude, and sign of additional dislocations, this procedure can be used to

create a staircase opening of any desired shape, as shown in Figure 3.4b. Analogous to



the distributed load, the dislocation distribution is defined in terms of its density B(f)
such that it produces, in the interval d&, a net Burgers vector db = B(&)d&. With respect

to Figure 3.4c, db is equal to the difference in the gap between points & and &+ d&,

—db = B(&)dé = {g(f) +Md§} ~g(¢9) = di—(;)df (3.20)

Equation (3.20) defines the dislocation density as

(3.21)

Replacing the discrete dislocation in Equations (3.18) and (3.19) with the dislocation
density, and integrating the effects of each dislocation embedded in the distribution along

the infinite interval yields

o, .=0"+ 2u Iw B(Cf)dg

Y a(k+1)%= x—¢&

(3.22a)
g(x)= [ BH(¢-x)as= [ B&)(0)de+ [ B(&)1)ds= [ B(¢)ag

(3.22b)

For the Griffith crack the dislocations are distributed along the interval |x| <a, along

which Equation 3.16a demands that



y=0 |x|<a

2,Ll a B(f)dg_ o
ﬂ(K+1)I-a E—x -7

(3.23)

Fig. 3.5
As will be seen in the solution process, Equation (3.23) does not have a unique solution.
The physical meaning of the nonuniqueness, as shown in Figure 3.5, is that an infinite
number of traction free cracks with nonzero opening at the endpoints x =+ta satisfy

Equation (3.23). Closure of both crack tips leads to a unique solution of Equation (3.23)



through the single valued displacement conditions g(—a): g(a):O. These can be

written in terms of the dislocation density through Equation (3.22b)

g(-a)=] " B(&)dE=0

—a

(3.24a)

(3.24b)

Equation (3.24a) is trivial, so only Equation (3.24b) is needed as a supplement to
Equation (3.23).

Equations (3.23) and (3.24a) are nondimensionalized through the substitutions

g x 5 2u
=2 =— =—+ B
==, 5=" and B(¢) P (1)
[ B _, o <1
Tt—-s
(3.25a)
1 A
[ B(r)de =0
(3.25b)

Symmetry about the y—axis eliminates solutions bounded at one end and

singular at the other. The bounded at both end solutions does not satisfy the consistency

condition (3.9), since

(3.26)



which follows from the fact that the integrand is an even function.

The solution is therefore

. L g N C L g (1-7) C

B(t)=- dt + =— dt +
() l—g? 1 t—s N 21— s 1\/1—1‘2(1‘—5) Vi-s2
(3.27)

From Table 3.2 it follows that

A S C
B =
(5 a1 - s +\/l—s2

(3.28)

Substituting Equation (3.28) into (3.25b)

de+cf

[ £ &,

(3.29)

The first integral on the left hand side of Equation (3.29) is equal to zero, since the
integrand is an odd function. The second integral, on the other hand, is not equal to zero,
since the integrand is an even function. Therefore the equation is satisfied only by C=0.

The dislocation density becomes

(k+1)o”  x
20 Na*—x*

B(x) =

(3.30)

The crack opening displacement is obtained as



o(x) = [ B&)az ﬂ ) J <'<+22

(3.31)

The stress intensity factor can be calculated by first evaluating the stress ahead of the

crack along y=0

= °°+O-—w ¢ o’ 1+—
o,=0 ﬂf N ( )df !l ‘[1\/1— ) ]

(3.32)

Using Table 3.2

(3.33)

The stress intensity factor calculated as

K, =lim u[,/27r(x a)o ]—hm | 27(x-a)o \/ |x\|/ =o"Jm
* (x+a)

(3.34)



Numerical Solution of Singular Integral Equations
In most problems the resulting integral equations cannot be solved analytically. In
this section a very simple and accurate method is presented that can be used to obtain

numerical solutions of the general form of the singular integral equation of the first kind

fl q;(i)jt + fl(/’(t)K(X,t)dt = f(x) ~l<x<1 (3.35)

The kernel K that appears in Equation (3.35) is a well behaved function that takes care
of additional boundary conditions that arise from finite geometry and/or interaction
effects. Some examples will be described subsequently. Without loss of generality,
consider the solution singular at both endpoints, for which the unknown function can be

written as



¢reg (t) (3.36)

e

where ¢, is a bounded function. Equation (3.35) can then be written as

J._l gpreg(t)dt +J'1 (Preg(t)K(X't) dt = f(X) -l<x<1l (3.37)

Wi-ti(t-x) Tt J1-t?

A very accurate and simple method for solving Equation (3.37) numerically was
developed by Erdogan and Gupta. This method relies on properties of Chebychev

polynomials of the first and second kind, which are defined, respectively, as

T,(t) = cos( j &) (3.38a)
_sin([j +1]¢)
where
t =cosé 0<0<r (3.392)
X = CO0S ¢ 0<¢<r (3.39b)

The roots of these polynomials, obtained by setting Equations (3.38) equal to zero, are

given by

6 =——F7— k=12,...n (3.40a)

$, =— r=12,..(n-1) (3.40D)



and are shown schematically in Figure 3.6.

The method relies on the representation

[tz L) (3.42)

t
1-t*(t-x,)

which follows from the identities that relate the Chebychev polynomial of the first kind

of order j to the Chebychev polynomial of the second kind of order j—1

1 Ty(t)dt
— 7 U, 3.42
Ly =W (9428
1 Ti(cos,)
Uia(0s4,) = 2. oo, —cosg (3.420)

The numerical procedure starts with the approximation of the regular part of the

unknown function in terms of the Chebychev polynomials of the first kind

n

Dreg(t) = Preg(COSH) = D BT (1) (3.43)

j=0

where the B; are constant coefficients. Multiplying Equation (3.41) by B; and summing

on j leads to the following representation for the first integral in Equation (3.37)

[ et e om(esh) o, g (3.44)

l\ll—tz(t—Xr) N = C0s 0, —Cos g,

The next approximation involves the second integral in Equation (3.37)



1 dt 7 T
J._lgoreg (HK(x,, t)ﬁ = IO Doy (DK (X, 1)dO ~ F; Preg(COS 6, )K(COS @, COS B, )

(3.45)

Equations (3.44) and (3.45) transform the singular integral equation into a system of

algebraic equations for the unknown values of the regular part of the unknown function

T < 1
_Z¢reg(tk)|:tk X

n < +K(tk’xr)}: f(x) r=12,..,(n-1)

r

(3.46)

where t, =cosd, and x, =C0Sg, .

Because there are n unknown nodal values of ¢, and only (n —1) equations, an

additional condition that renders the solution unique must be supplemented to the system.

As explained in the previous examples, the uniqueness condition is of the form

[ olt)dt=A

(3.47)

which is approximated as

J~1 Dreg (t)dt ~ Zi(preg (tk) S\ (3.48)

1 J1-t? n'a

For a given problem, the solution of Equations (3.46) and (3.48) provides n
values of ¢, at points t...t, within the interval —1<t<1. The values of ¢, at the

endpoints t =1, which for crack problems is proportional to the stress intensity factor,

can be evaluated in terms of the calculated nodal values by using Legendre polynomial



interpolation to find a unique polynomial that takes on the same values as ¢, at points

t....t,. This procedure, which is described in detail by Rivlin, provides the formulas

1< -t . 2k -1
(Dreg (1) = H < - ¢reg tk) (Dreg( )COt(I?]zj (349&)

l +

n
1, PRSI 2k -1
Preg(~1) =2 ()" r - ; -)"p (tk)tan([m]fj (3.49b)

k=1 k

Example: A Crack Perpendicular to a Bimaterial Interface

Figure 3.7a shows a Mode-I crack of length 2a perpendicular to the perfectly
bonded interface between two isotropic half-planes. The crack is in material 1.
Henceforth superscript and subscript 1 (2) represents "of material 1 (2)". The loading
consists of uniform pressure o along the crack surfaces. The distance from the left tip of
the crack to the interface is 6. Because of its relevance to fracture of composite
materials, the problem of calculating the stress intensity factors for this configuration has
been addressed by several authors, including Erdogan et al., Atkinson, and Romeo and
Ballarini.

This elasticity problem can be formulated using the Green's function for the edge
dislocation with Burgers vector parallel to the interface, as shown in Figure 3.7b. The

Airy stress functions for mediums 1 and 2 are given by Dundurs

2

b, rllogr1c0591+a+ﬂ r,logr, cosé, — 5 0 smez—z(a_ﬂ)é(logr2 cos6, +§c0549)
1-p ﬁ 1-p 2

(3.50a)

JrC (iﬂil)ll 7 b, logr, cos 6, + A(r6;sin 6, + 2£log )|
2

(3.50D)



where the Dundurs constants are defined by

_ ,uz(lcl +1) - yl(rcz +1)

O e, 1)+ ey +1) (3:512)
_ ﬂz(Kl _1) ~ ,U1(K2 _1)

B e, 1)+ e +1) (3:51h)

If the dislocation is placed in material 2, the corresponding Airy stress functions are

obtained by replacing « and £ in Equations (3.50) with —« and —f. The stress and

displacement fields associated with these stress functions satisfy the jump conditions at

point (O, §) and the continuous displacement and continuous traction conditions along

the interface

o5, (x,0) = o7, (x,0) (3.52a)
oy (%,0) = o, (%,0) (3.52b)
Uz (x,0) = uy(x,0) (3.52¢)
u;(x,0) = uy(x,0) (3.52d)

The relevant stress along the crack line is given by

2 1
ok (0,y) = ”(KlJrl)b{y_ngK(y,g)} (3.53)

with

K(y.¢) {Mﬂz L +2(a_ﬂ)§(y_§)] (3.54)

1-5 y+&  1+8 (y+&



Replacing the discrete dislocation with a distribution and setting the total stress equal to

the prescribed uniform pressure leads to

+K(y,§)}d§:a S<y<s+2a

(3.55)

and the single valued displacement condition

Lf” B(£)dE=0 (3.56)

Note that the kernel K appearing in the integral equation is well behaved as long as the

left crack tip does not touch the interface (5:0). If it does, then the term yie
+

becomes singular and the singularity at the left crack tip is different than square root. The

resulting integral equation is said to have a generalized Cauchy kernel, according to

Erdogan.
Equations (3.55) and (3.56) can be cast in the form of Equation (3.35) and (3.47)
by means of the transformations t = ¢-(a+o) Ls=d” (a+9) , B(t)= _ 2 B(t).
a a 7[(1(1 +1)0

The result is
[ é(t)[%+ K(s,t)}dt -1 -1<s<1 (3.57a)
" B(t)dt=0 3.57b
J:l (t) t= (3.570)

with



5
atp 1 2a-p) (t +1+aj(s_t) (3.58)

1- B 5 1 :
'Bt+5+2+2a vh (t+s+2+2aj

K(s.t)

The discretized matrix form of the singular integral equation (3.57a) is the

n—-1xn matrix

1 1 1
t_S‘1+K(t1,$1) t _Sl+K(t2,Sl) t _51+K(tn,sl) o
' ? n reg
1 1 1 X
K K(t K(t B, (t 1
k) k) ki) |80
1 1 1 5 (t ) )
K K K reg\ "n
_tl s + (t11 n—l) t—s + (tZ, Sn,l) t—s . + (tn,Snl)_
(3.59)

which is made square with the supplemental discretized version of single valued

displacement condition (3.57b)

Bra(t2)| 0 (3.60)

A

Buy(t:)
The solution of system (3.59) and (3.60), together with the Legendre formulas

(3.49), provide the value of the regular part of the dislocation density at the crack tips,

which are related next to the stress intensity factors. Without loss of generality, consider

the stress intensity factor of the crack tip closest to the interface.
The crack opening displacement very near the tip of a Mode-I crack is given by

the asymptotic form derived in Chapter 2



(K‘l +1)K, r

The dislocation density follows from Equation (3.61)

o (K1+1) ﬁ
B(r)— 4;!1@\/? (3.62)

Equating this last equation, as r=¢-a=a(l+t)—>0, with the numerical

approximation

B(t) = ﬂ(leill)a B(t) = % (3.63)
provides,
o0 e e O
o

O'\/E = _Z”Breg(_l) (3.65)



A Crack Very Close to a
Bimaterial Interface

This paper presents the plane elastostatics analysis of a semi-infinite crack perpendic-
ular to a perfectly bonded bimaterial interface. Both cases of the crack approaching
the interface and penetrating the interface are addressed. The distance from the tip
of the crack to the interface is 6. A singular integral equation approach is used to
calculate the stress intensity factor, K, and the crack-opening displacement at the
interface, n, as functions of 8, the Dundurs parameters a and B, and the stress
intensity factor ky associated with the same crack terminating at the interface (the
case 6 = 0). The results are presented as K; = ki§"* M(«a, B) and n = Ckid' (e,
B) where \ is the strength of the stress singularity associated with 6 = 0, f and #
are functions calculated numerically and C is a material constant. These results can
be used to determine the stress intensity factor and crack opening displacement of
cracks of finite length 2a with one tip at a distance 6 from the interface for 6/a <
1. The selected results presented for a crack loaded by a uniform far-field tension in
each half-plane show that the stress intensity factors approach their limits at a
relatively slow rate.
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Graduate Student.

R. Ballarini
Associate Professor.

Department of Civil Engineering,
Case Western Reserve University,
Cleveland, OH 44106-7201

1 Introduction

Consider the plane elastostatics problem shown in Fig. 1(a).
A Mode I crack of length 2a is perpendicular to the perfectly
bonded interface between two isotropic half-planes with shear
moduli g; and Poisson’s ratios v;, i = 1, 2. The distance from
the left tip of the crack to the interface is 6. Because of its
relevance to fracture of composite materials, the problem of
calculating the stress intensity factors for this configuration has
been addressed by several authors (Erdogan et al., 1973; Atkin-
son, 1975). It is well known that this elasticity problem can be
formulated using the Green’s function for the stress produced
along the crack line by an edge dislocation. This procedure
leads to the following singular integral equation and uniqueness
condition:

2#1 6+2a [ 1 a+ﬁ2 1
vr(m+1)f6 PO e Ty e
LA =B Ey =
1+8 (y+¢&)

6+2a
f ’ b(E)dE=0 6=y, £=6+2a
6

]d£ = _Uxx(y)
(1)

where o,, is the stress along the crack line induced by the
remote loading in the uncracked body, & and 8 are the Dundurs
parameters ( Dundurs, 1969)

o = a2y + 1) —(ka + 1)
pa(ky + 1) + pi(ka + 1)

- ok ~ 1) = (ke — 1)
Moy + 1) + (ke + 1)
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k; = 3 — 4v, for plane strain and «; = (3 ~ v;)/(1 + v;) for
plane stress. The unknown dislocation density »(€) is defined
in terms of the crack opening displacement [«,.(£)] as

o)
b(&) o [u,].
The first equation in (1) represents the zero traction condition
along the crack surfaces, while the second enforces single-val-
ued displacements (both crack tips are closed). In the following,
the loading is taken as uniform remote tension in each half-
plane, ¢ " and ¢ ®, such that

(2)

1+ a
1l -«

2)

(3)

oM

a

and therefore o,, = ¢ " in Eq. (1).

The ratio 6/2a enters in the kernel of the singular integral
Eq. (1) in such a way that stress intensity factor values calcu-
lated using a direct numerical solution inevitably lose accuracy
for 6/2a < 1. Indeed, the smallest ratio for which Erdogan et
al. (1973) present results is §/2a = 0.05. Their results showed
that as § — O the stress intensity factor of the crack tip closest
to the interface approaches zero when y, > u, and infinity when
U1 > ps. These limits result from the discontinuous change in
the order of the stress singularity as 6 becomes equal to zero.
As will be explained in the next section, for § = 0 and u, >
i the stress ahead of the crack tip is of the order k7~ with A
< 1. This weaker singularity in effect reduces to zero, as § —
0, the amplitude K; of the square root singularity associated
with § # 0. For p; > i, N > 3, and similar arguments explain
why K, increases to infinity as 6 — 0. Assuming linear elastic
fracture mechanics these limits imply that the crack reaches the
interface at infinite load for u, > u, and zero load for
My > .

As a first step toward the development of physically sound
propagation criteria for interface cracks, this paper is concerned
with determining, as functions of the elastic mismatch, the rate
at which the square root singularity approaches the limits dis-
cussed above. To this end the problem is formulated asymptoti-
cally in terms of a semi-infinite crack in which the only length
parameter is 8.

The approach used is essentially the same as that used by
Hutchinson et al. (1987) to study a crack very close to and
parallel to a bimaterial interface. It relies on some relevant well-
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Ay traction ahead of the crack tip is characterized by
k
@ lim {c@ @)} = == (-y)~* 4
g t ’ ’ e )} \/ﬁ ¥) 4)

where superscript (i) denotes ‘‘in material (i),” k; is the stress
intensity factor, and A(0 = N\ < 1) is the root of the equation
derived by Zak and Williams (1963)

2B-a) . ., atf’
i U Vi

The loci of constant A in the a-g plane are shown in Fig. 2(a).
As pointed out by Dundurs (1970), this figure clearly illustrates
that for a — 1 the quantity \ is more sensitive to the mismatch
in the Poisson’s ratios, while for & — —1 it is more sensitive
to the mismatch in the shear moduli.

Another important result from the Williams analysis relates
the crack-opening displacement (COD), [1'" ()], to the stress
ahead of the crack, i.e.,

material 2 material 1

Uy g UMy cos (Am) =

(5)

a*| | | l 1 1 l l i | g yli;;}{o@(—y)}=jg{—¢%[u£'><y>]}
v
= b 6
o161 lim (#5()) (6)

where the bimaterial parameter ¢ is defined as

= 21 1 <1+a
T (kg + 1) sin ) \1 - B2

>[1 =26\ ~ D]

(7N
Equation (6) allows the determination of the stress intensity factor
of a crack of length 24 in terms of the dislocation density as

- material 1 A
material 2 k; = lim {(pw/;a*b(y)} (8)
y=o*

Y Yo

in which

g(y) — a—()\+ll2)b(y)y)\(2a _ y)l/2
is the regular part of the dislocation density b(y).

05 o=

0.26 {09 0,

AT e

Il

Fig. 1(b) i 1!/ Lociof 3
,85 I

\

Fig.1 Finite length crack (a) approaching and (b) penetrating a bimate- 0.5 i
rial interface 4 075 -06 -025 0 025 05 075 1
o
Fig. 2(a)
known results for the asymptotic behavior of the stresses and
crack-opening displacements in the vicinity of the tip of a crack 05 . _
impinging on a bimaterial interface. These are reviewed briefly \ T /A

in the next section. The solution of the semi-infinite crack prob-
lem is discussed in the third section and an example of how
the asymptotic analysis can be applied to the problem of Fig. p
1(a) is provided in the 4th section. The last section extends the

method to the case of a finite crack that penetrates a distance octof
& through the interface, Fig. 1(b). | "
05 o7 4
2 Finite Crack Terminating at the Interface
The results of the Williams technique analysis for a crack Fig. 2(0)
terminating at the interface (§ = 0 in Fig. 1(a)) show that the Fig. 2 Loci of (a) constant A and (b) constant p in the a-8 plane
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It is worth noting that (8) could also be derived by studying
the behavior near the crack tip of the generalized Cauchy-type
integral that represents the stress o3,

3 Semi-infinite Crack Analysis

Consider a semi-infinite crack perpendicular to the interface
and terminating at a distance § from it. The COD at a point r
=y - 6 very close to the crack tip (#/6 < 1) is given by [u,]
o K;r''?, where K, is the stress intensity factor. For r/6 > 1
the COD approaches the one associated with the crack tip im-
pinging on the interface (6 = 0), i.e., [#,] « k' ~*. The physical
meaning is that since § is very small the COD in the far-field
is indistinguishable from the COD of the same crack impinging
on the interface.

Linearity and dimensional considerations (§ is the only char-
acteristic length) demand that

K;

Y=t Sfla, B)
where fis a function of the Dundurs parameters only. This type
of argument was employed by Hutchinson et al. (1987) and He
and Hutchinson (1989).

It should be noted that this last result was derived by Atkinson
(1975) by applying the Mellin transform to the integral equation

(9)

(1]
0.5 wé@%
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0.25 Fyn ——
- 4
RTINS
p 0
/
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0.5
1 075 05 025 0 025 05 075 1
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Fig. 3(a)
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0.25 ‘5"312 o B —
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e i ——
B 0 / Tt
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Fig. 3(b)

\e
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Fig. 3 Loci of (a) constant £, (b) constant f*, and (c) constant 4} in the
«-f3 plane
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and using the Wiener-Hopf technique. He showed that the stresses
ahead of the crack are given by (using the notation in his paper)

N
O = 61/2’,.~l/2{ z Akes;~2 + 0(635;—4)}
k=1

(10)

where the A, are constants independent of ¢, oy and 8 are
material constants (not to be confused with the Dundurs param-
eters), and s; are the N real roots (Re(s) > 1) of the equation

(11)

It can be easily shown that the dominant term of the stress given
by (10) corresponds to that produced by the stress intensity
factor defined by relation (9), the constants A, being identified
with the values of k;f (e, ), and s] = 2 — \. Atkinson devel-
oped his solution for a constant pressure loading, but did not
present numerical results for coefficients A, . The main contribu-
tion of the present paper is that it presents complete results for
these universal functions.

As will be described in the next section, (9) provides a powerful
tool for the asymptotic analysis of finite length cracks approaching
a bimaterial interface. The values of the function f(a, 8) were
calculated by integrating numerically (1) for 2a = c. The details
of the solution procedure are given in the Appendix.

The loci of constant f in the «-f plane are shown in Fig.
3(a). It is interesting to note that the sensitivity of fto changes
in shear moduli and Poisson ratios is qualitatively the same as
that of the singularity coefficient \.

cos (ms) + a; — B(s — 1) = 0.

4 Finite Crack Very Close to the Interface

The numerical scheme used for solving the singular integral
equation for the finite crack depicted in Fig. 1(a) becomes
unstable when the ratio 6/2a assumes very small values. For
these cases, an indirect method based on asymptotical analysis
is recommended for computing the stress intensity factor. This
approach relies on the combination of (9) and the stress inten-
sity factor k; associated with the finite crack terminating at the
interface (6 = 0).

As an example, consider the case of a crack acted upon by
a uniform remote tension field in the two connected half-planes
according to (3). As shown in the Appendix the stress intensity
factor k; can be represented as

k;

ovrat

= h(a, B). (12)

The loci of constant / in the a-8 plane are shown in Fig. 4. It
is observed that the stress intensity factor for this problem is
yet another parameter that is more sensitive to the mismatch in
the Poisson’s ratios for a — 1, while for &« = —1 it is more
sensitive to the mismatch in the shear moduli. Combining (9)
and (12) leads to the following expression for the stress inten-
sity factor of a crack of length 24 at a distance § from the
interface:
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Fig. 5 Numerical instability and transition to the asymptotical solution
of g for small 5/a ratios for (a) & = 48 = % and (b) & = 48 = -3
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Selected results for the asymptotic value of the stress intensity
factor as calculated using (13) are presented in Figs. 5(a) and
5(b) for a = 48 = *+3§; these values of the Dundurs parameters
include v, = v, and w/p, = 10 or puy/u, = 10. The solid
lines in these plots are the values of the stress intensity factor
calculated through a direct numerical solution of (1) along the
finite interval. The procedure used for these calculations is out-
lined in the Appendix. As expected the direct solution for a
given number of integration points breaks down as the distance
from the crack tip to the interface assumes relatively small
values. The asymptotic solution approaches the envelope de-
fined by the value of §/a at which the direct numerical solution,
for a given value of integration points, becomes unstable.

The most interesting results of this analysis is that the stress
intensity factor approaches the aforementioned limits at rela-
tively slow rates. For significant elastic mismatch, o = 48 =
#r» the stress intensity factor for §/a = 0.001 is approximately
30 percent of the nominal value associated with no interface.
These results suggest that although the stress intensity factor for
Uz >t approaches zero, this limit is associated with distances &
much smaller than the plastic zone that inevitably surrounds
the crack tip. The leading edge of the plastic zone will thus
reach the interface at a finite load. Perhaps more importantly,
cracks in typical engineering materials will have extremely
small § values that will invalidate a continuum mechanics for-
mulation. '

5 Finite Crack Extending Through the Interface

The asymptotical technique described in the previous sections
can be easily extended to other interface crack problems. The
natural extension of the previous formulation is to a finite crack
of length 2/ = 2(a + b) that has extended beyond the interface
a distance § = 2b < [ (Fig. 1(b)). This problem can be reduced
to a set of coupled singular integral equations using the same
Green’s function approach that is used to derive (1) (Erdogan

Journal of Applied Mechanics

and Biricikoglu, 1973). These equations are written symboli-
cally in terms of the dislocation densities 5”(¢) (i = 1, 2):
2a

0
A, b(l)(g)Klidg + Azf b(z)(E)Kz,-d§ ==~c®
0 ~2b
(i=1,2)

2a 0
f b(&)dE + f bP(£)dE =0 (14)
0 —~2b
where K; (i, j = 1, 2) are Cauchy-type kernels. The first two
Eqs. (14) represent the traction boundary conditions, while the
third enforces single-valued displacements. The condition on
the dislocation density required to insure compatibility at the
interface is given by

lim bP )bV (—y) = F(a, B, ) (15)
y0*
where
(1l+a)8+(ax—pB)
X (1= B)(—1+4p — 24%)
—_ —_ 2
F(a, 8, p) = (1 £%) cos (um) (16)

(1 +a)(—1+28 —28u)

and u is the power of the stress singularity, which satisfies the
characteristic equation

(1 = BH(1 + cos? um)
+2[2a8 — 1 - (2a8 — ) cos pn] + 4u(2 — p)
[(@ — BY*(1 ~ w)? — af + Bla — B) cos ur] = 0.

The loci of constant g are plotted in Fig. 2(b).

Again a direct solution of Egs. (14) is inadequate for very
small b/a ratios and an alternative approach is furnished by the
asymptotical analysis. The reference problem is still the finite
crack of length 2/ terminating at the interface. The semi-infinite
analysis on the other hand has to be redefined, since the crack
tip is now located beyond the interface at a distance 6 from it.
As before, the far-field COD has to approach the one associated
with no penetration, [u,] * k7', and in the vicinity of the
crack tip the COD is given by [u,] « Ky'?>. However, an
additional requirement is that the COD at the interface be of
the order r'~*. Equation (9) still applies with f (e, §) replaced
by the new function f *(«, 8) whose values are computed by
solving numerically the proper set of integral equations (see
Appendix ); the loci of this function in the a-£ plane are plotted
in Fig. 3(b).

Combining (9) and (12) leads to the asymptotical expression
of the stress intensity factor of a finite crack of length 2/ the
has penetrated in material 2 by the distance 6 = 2b </

K,
a(l)\/;luz = g%, B)

1/2~A
=<12+cc> Fa B)h(en B) (1T

where
¢ =bla.

The predictions of Eq. (17) are valid in the limit 6// = 0.
Figures 6 and 7 show the convergence of the nondimensional
stress intensity factor values found by direct numerical integra-
tion to the asymptotic solution given by (17) for the two mate-
rial combinations already used in the previous sections, o = %
2 = 4. Note that the for the case @ = +7; = 43, which
corresponds to A = 0.347, the rate of convergence is much
slower than for & = —% = 48 (A = 0.755).

Note that the asymptotic analysis can be used to compute not
only stress intensity factors but also other quantities such as the
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crack-opening displacement at the interface. In fact, for a semi-
infinite crack the COD at the interface, n, is given by

1+K1

kis' (e, B) (18)

T’ =
1
where 7 is a function of the Dundurs parameters whose loci are
shown in Fig. 3(b). The asymptotic expression of the crack-
opening displacement at the interface for the finite crack in Fig.
1(b) is then given by

o= _Gqsla(é) h(e, B, B) §/1-0  (19)

where
oDk, + 1)

¢ = -
1 2

6 Conclusions

The numerical schemes that are used to solve integral equa-
tions describing the elastostatics problems of finite length cracks
close to a bimaterial interface are not accurate when the relative
distance 6 from the crack tip to the interface becomes very
small. An asymptotic analysis has been developed that provides
accurate stress intensity factors for such problems and gives
insight into their rate of change as 6 — 0. For the case of a
crack approaching or penetrating a bimaterial interface, it has
been shown that the stress intensity factor at the leading crack
tip approaches its limiting value at a slow rate. These results
suggest that propagation criteria for such problems are associ-
ated with nonlinear processes. The technique presented in this
paper can be used to solve a class of problems in which a small
parameter leads to an unstable direct numerical solution of the
governing equations.
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APPENDIX
Let
_ 24, .
i_7T(1+K1) (i=12)
o+ p° 2(a — ) 1+ a
M=—; = =—
1-p 1+8 1-4°
_a—fp _2a - f) l-a
P_l—ﬁz’ Q‘— l—ﬂs —l—ﬁz,
1 M 5()’—5)1‘7
K I = + !
W T T R T T ey

1 ¢
K s =9 -2 ;
(8 3) [y—é ﬁ(y-sﬁ]

1 ¢
K21 5 =T 2 5
&) [y~£+ ﬁ(y—E)z}

I P y-8Q
& y+€ +E

The following procedures were used to solve the integral equa-
tions numerically.

Kn(€, y) = (A1)

Crack of Length 2a at Distance & From the Interface
(6 =0)

The integral equations for this case are

5+2a
A, L b(f)K“(g, yydE = g

6+2a
J; b(&)d¢ =

The case 6 = 0 corresponds to a crack impinging on the inter-
face. For the numerical computation these equations are ren-
dered in nondimensional form and normalized in the interval
[—1, 1] by means of the transformations

b=y,6=6+2a
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tzf—(a+6); C=y—(a+5);
a a
__0'(”(:(]+])
¢ = T ou

The nondimensional stress intensity factor at the crack tip clos-
est to the interface is given by

h(a, B) = am’;;ax = "‘2: Lyb(-1); 6=0 (A3)
gla, B) = % =b(~1); 6>0 (Ad)
g Ta
where
v= Klz:l:ll sin (IM) 11—+g2 [1 =250 = DI
and
b(t) = b()(1 + ) (1 — 1)'?

is the regular part of the dislocation density (A = ; when & >
0). For the numerical solution of (Al), two methods were
compared. b(¢) in the first method is represented as a truncated
series of Jacobi polynomials (Erdogan et al., 1973), while in the
second method it is expressed in terms of piecewise quadratic
polynomials (Miller and Keer, 1985). The results shown a
faster convergence for the latter method for which 64 integration
points were necessary to capture three significant figures, versus
400 integration points necessary for the first method.

Semi-infinite Crack Whose Tip is at Distance 6 From
the Interface

The singular integral equation is the same as the first (A2)
except that the upper limit 24 is replaced with . The unknown
dislocation density is represented in real coordinates as

kl 1/2
b(&)= P (€ 66)‘”5[

with the additional condition lim 5(€) =

b(ﬁ) Tw(EP” ] (A5)

0 replacing the crack

£—ro0
closure condition that appears in the second Eq. (A2). As dis-
cussed by Rubinstein (1992), this representation stabilizes the
singular integral equation. w(&) is a function of the type

w(€) = sin® [—’25(1 —g)] .

With the change of variables ¢ = 26/(1 — 1),y = 26/(1 — §)
(A4) is normalized in the interval [—1, 1].

By extracting the dominant term of the singularity of the
resulting equation, the nondimensional ratio of the local and
far-field stress intensity factors is determined as

(A6)

(AT)

fa, B) = 16+ = (-1,

Crack of Length 2a Extending Through the Interface
by 6(6 = 0)
The set of coupled singular integral equations is given in (14)

with A; and K; defined in (A1). The compatibility condition at
the interface is given in (15). The normalized nondimensional
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form of (14) and (15) is attained by means of the transforma-
tions

—a - a M+
t1—§ ; §1=y 3 ¢1=”M§
a a 24

+b +b (1 +
12=_’_—_f ; C_,zz“y_; ¢‘2=“—(7 ¢ KZ);
b b 2#2

that lead to the following representation of the dislocation densi-
ties:
b)) = BV(8)(1 — 1)1 + m)k
bP(n) = bP(n)(1 = 6)"*(1 + n)*  (A8)
where
¢ = bla.

The nondimensional stress intensity factor at the crack tip
closer to the interface is then given by

g¥(a, B) = (l)‘/—

1 2¢c 1+ a.
= b(2)1
2“¢1V1+c -a ().

Semi-infinite Crack Wheose Tip is at Distance & Beyond
the Interface

The equations for this case are similar to the first two Egs.
(14) with the upper limit 2a replaced with o, and Eq. (15).
The third Eq. (14) is replaced by the following condition that
stabilizes the integral equations and insures uniqueness of the
solution:

(A9)

lim 5(€) = 0.
g—ow

The dislocation density functions have the form

1 |
b(l)(é.) - \/_(E + 6))\ ug/-t |:K12:1 b(l)(g) + Wl(£)¢_1:|
@ ki Kk + 1 b®(&) /24—
R A TR (A10)
where w,(£) is a function of the type
wi(€) = sin? [g% (A1)

The normalized form of the set of equations is attained through
the change of variables

§—6 ¢ = 2+ 6 2y + 6
T A : 5§ 6
By extracting the dominant term of the crack-tip singularity,

the nondimensional ratio of the local and far-field stress inten-
sity factor is then given by

y— o,

t 9
! y+ 6

&=

FH(a B) = f— 512 = FO(1). (A12)

The crack-opening displacement at the interface is given by
0 6 1
n= ‘f , By(£)dE = Ef By(1)dr
- ~1

1+K1
2

k' (e, B) (A13)
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