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a b s t r a c t

A damage model, which is based on the stochastic modeling of the microstructures, is developed for the

quasi-brittle materials subjected to repeated loading. According to this model, the overall response of

the material is represented with a series of micro-elements joined in parallel. A combined model is

proposed for the micro-element considering the fracture as well as the hysteretic energy dissipation. To

account for the progressive failure, the random fracture strains are assigned to the micro-elements.

Therefore the overall parallel bundle is considered as a stationary random field. Then by averaging the

microscopic random field, the overall loading, unloading and reloading curves are derived analytically.

Two hysteretic rules are derived from the proposed model, and the overall hysteretic deteriorating

behaviors could be well reproduced. To demonstrate the validity of the present model, the numerical

results are shown against the stochastic simulated curves as well as the experimental data. The present

model provides an alternative approach for the efficient modeling of the hysteretic deteriorating

behaviors for the quasi-brittle materials.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanical modeling of the quasi-brittle materials such as
concrete and rock is one of the essential topics in the research of
the civil engineering. However, the physical modeling of concrete
as well as rock is still quite challenging due to their inherent
complexity. It is observed from the experiments that the failure of
the quasi-brittle solids is commonly characterized by the
nucleation and propagation of micro-cracks subjected to tensile
and shear tractions, and often involves contact and friction on
these surfaces under certain loading conditions. The propagation
of the micro-cracks is often represented as the deterioration and
descending of the load–displacement curve. And the friction on
the cracked surfaces leads to the plastic deformations. Hence a
considerable number of studies are stressed to develop the
theoretical models for the simulation of such phenomenon.
Among these researches, the continuum damage model was
intensively investigated in recent years. Several celebrated works,
e.g. [1–3] and so on, were proposed to consider the multi-
dimensional damage behaviors for concrete on the basis of
thermal dynamics and have been widely adopted for structural
non-linear analysis. However, the development of the damage
evolution function seems to be controversial within continuum
mechanics framework. The irreversible thermal dynamics merely
ll rights reserved.
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regulates the reasonable range of the non-linear evolutions rather
than specifies their expressions. Hence most continuum damage
models just directly adopt the damage evolution expressions
identified by the experimental data with many empirical material
parameters. In the present paper, we investigate the uniaxial
behaviors of quasi-brittle materials under non-uniform repeated
loading by idealized micromechanical model and express the
non-linear evolutions in terms of damage variable. This work
provides an alternative approach to develop the damage evolution
functions for continuum damage mechanics.

According to the uniaxial idealized micromechanical model,
structural element can be idealized as a sequence of micro-
elements jointed in a system. The individual elements represent
the microscopic properties of the material. And the system
represents the macro or structural response. The bridge between
the two scales is the probability distribution which describes the
mechanical properties of the micro-elements. Therefore, complex
macro-material behaviors can be developed based on the parallel
system in which individual elements are endowed with simple
material properties. Two classes of micromechanical models are
often adopted for the material modeling, e.g. the serial element
model and the parallel element model. The former one is also
known as the Preisach model, which was proposed by the German
physicist Preisach [4]. Later, Krasnoselskii [5] developed the
mathematical structure for this model. In recent 20 years, this
model was intensively investigated and applied to the modeling
of hysteresis for piezoelectric materials ([6–8], and so on). The
other class of models was proposed mainly for the modeling of
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Fig. 3. Ductile behaviors in two scales.
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material hysteresis and failure under uniaxial loading. And the
proposed model is developed based on the parallel element
models (Fig. 1).

Historically, the parallel element model was firstly proposed to
estimate the rupture strength of fibrous materials such as threads,
cables and woods [9,10]. Later, this simple but elaborate model
was extensively applied to the simulations of brittle [11–13] and
ductile [14–18] phenomenon. Eibl and Schmidt-Hurtienne [19]
and Valipour et al. [20] proposed the rate dependent model for
concrete beams based on the parallel elements model. Bazant and
Pang [21] also investigated the size effect of concrete on the basis
of the parallel elements model.

The simplest model to describe the progressive damage
propagation for a brittle bar subjected to uniaxial loading was
provided by a loose bundle parallel bar system. According to this
model, each element is endowed with common stiffness but
different rupture strength. And the random distribution of the
rupture strength is given. Then the monotonic load–displacement
behavior of the brittle materials is obtained by averaging the
stochastic microstructures (Fig. 2). It is observed that the failure
strength as well as the load–displacement curve is deterministic
in the limiting case when the numbers of elements approaching
infinity due to the independence among each element. By noting
this, an extended model was proposed by Kandarpa et al. [32] to
represent the randomness of the load–displacement responses for
the brittle materials. In this model, the failure stresses of the
micro-elements are considered as a random field. With proper
consideration of the distribution and the spatial correlation, the
statistics including the mean value and the standard derivation of
the load–displacement curves are analytically derived for the
parallel system. In Li and Zhang [22], the fracture strains of the
micro-elements were defined as random field thus a uniaxial
stochastic damage model was developed for concrete.
Fig. 1. Parallel element model.

Fig. 2. Brittle behaviors in two scales.
On the other hand, the parallel element model for ductile
materials is often developed for the modeling of the hysteretic
behaviors. In fact, as early as 1926, Masing proposed a series of
phenomenological rules to elucidate how to establish hysteretic
loop according to monotonic loading curve for ductile materials
[23]. In the middle of 1960s, Iwan introduced such a parallel-
series model (DEM) for hysteretic systems [14]. This model
consists of a series of ideal elasto-plastic elements connected in
parallel with a common stiffness but different yield strengths. If
the distribution of yield strengths is known, the stress–strain
curves for ductile materials under cyclic loading is obtained based
on either stochastic simulation or averaging methods (Fig. 3). It is
interesting that the Iwan model shows the Masing-type behavior
[15]. Later by assigning the rupture threshold after yield for the
elasto-plastic elements, Iwan represented deterioration with his
model [24]. Recently, Ashrafi and Andrew [25], Ashrafi and Smyth
[26] proposed the equivalent generalized Masing rule in order to
determine the deteriorating behaviors.

Unfortunately, neither the brittle type nor the ductile type
parallel element model provides excellent simulating results for
the quasi-brittle materials subjected to repeated loading due to
the inherent coupling of damage and plasticity. Therefore, the aim
of this paper is to develop a micromechanical damage model
which can account for both the softening and the hysteretic
behaviors for the quasi-brittle materials. This paper is structured
as follows: a idealized stress–strain model is first proposed to
describe the behaviors of micro-elements. The fracture strains of
the micro-elements are considered as random field. Then the
loading, unloading and reloading curves are analytical derived
based on the stochastic averaging approach. Several simulating
results are presented against experimental data, whose results
allow for demonstrating its capacity of reproducing the salient
features for the quasi-brittle materials subjected to repeated
loading.
2. Problem formulation

2.1. Micro-element model

As mentioned above, the elastic-perfectly fracture model and
the elastic-perfectly plastic model (Figs. 2 and 3) were adopted to
describe the elastic damage and the ductile hysteretic behaviors
correspondingly. However, most of the deformation processes for
the real materials are neither perfectly brittle nor purely ductile.
For the quasi-brittle materials, both the damage and progressive
failure play important part throughout the entire deformation
process; meanwhile, the plastic deformation rectifies the unload-
ing and reloading behaviors. Actually, the typical deformation
process for the quasi-brittle materials could be divided into two
stages. Before rupture, the linear elastic behaviors could be
observed. There is a sudden stress drop when the fracture strain is



Fig. 5. Loading stress—strain curve for the micro-element.

Fig. 6. Unloading and reloading behaviors for the micro-element.
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achieved. Then the residual stress is determined due to the
cohesive stress and the friction between the cracking surfaces.

Therefore, the fracture-ductile material model is proposed for
micro-element modeling of the quasi-brittle material (Fig. 4). Four
elements are adopted to assemble the combined micro-element
model. The main elastic element represents the elastic deforma-
tion of the material matrix; the fracture element defines the
fracture stress sc of the specimen; the friction element describes
the residual stress ss for the material; and the secondary elastic
element identifies the elastic behaviors of the cracked specimen.

By observing the fracture-ductile micro-element and using the
Heaviside function, the loading stress–strain relationship is
expressed as

s¼HðD�eÞEeþHðe�DÞss ð1Þ

where H(d) is the Heaviside function, E is the elastic modulus, D is
the fracture strain and ss is the residual stress. According to the
testing results of Ye [27] and Tao [28], the residual stress ss can be
defined as linear function of the fracture stress sc as follows:

ss ¼ Zssc ¼ ZsED ð2Þ

where Zs is the shear retention coefficient. Substituting Eq. (2)
into Eq. (1), one obtains

s¼ ½1�Hðe�DÞ�EeþZsEDHðe�DÞ ð3Þ

The monotonic loading stress–strain curve is shown in Fig. 5.
In unloading and reloading stages, the uncracked element

remains elastic (Fig. 4). And the hysteretic behavior of the cracked
element should be carefully considered. Based on the micro-
element configurations after rupture shown in Fig. 4, a bi-linear
hysteresis behavior could be obtained. The unloading and the
reloading behaviors of the micro-elements are shown in Fig. 6.
The unloading and reloading stiffness of the cracked element is
Fig. 4. The fracture-ductile micro-element.
derived as follows:

Es ¼
Eu

EuþE
E8ZeE ð4Þ

where Ze is defined as the stiffness decreasing coefficient.
Let (emax, smax) be the unloading point on the monotonic

loading curve, the stress–strain relationship could be expressed
using the piecewise function as follows:

smax�s¼

E0ðemax�eÞ if D�emax40

ZeE0ðemax�eÞ

2ZsE0D

if D�emaxr0 and emax�eo
2Zs

Ze

D

if D�emaxr0 and emax�eZ
2Zs

Ze

D

ð5Þ

Using the Heaviside function, Eq. (5) is rewritten as

smax�s¼f1ðemax�eÞþf2ðemax�eÞþf3ðemax�eÞ ð6Þ

where

f1 ¼HðD�emaxÞEðemax�eÞ ð7Þ

f2 ¼Hðemax�DÞH
2Zs

Ze

D�ðemax�eÞ
� �

ZeEðemax�eÞ ð8Þ

f3 ¼Hðemax�DÞH ðemax�eÞ�
2Zs

Ze

D
� �

2ZsED ð9Þ

It is observed from Fig. 6 that both the loading straight line and
the hysteretic loop are rotational symmetric. Hence the reloading
function could be obtained from Eq. (6) through the rotational
transformation. Let (emin, smin) be the reloading point on the



Fig. 7. Parallel element model.
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unloading curve. Then replace the terms (emax, �e) and (smax �s)
in Eq. (6) with (e, emin) and (s, smin) correspondingly, one gets the
reloading function as follows:

s�smin ¼f1ðe�eminÞþf2ðe�eminÞþf3ðe�eminÞ ð10Þ

If the current strain e exceeds the original unloading strain
emax, the stress–strain path will return to the monotonic loading
curve expressed by Eq. (3).

2.2. Macro-system formulation

Consider the parallel element system illustrated in Fig. 1. In the
present paper, the micro-elements are endowed with common
stiffness but different fracture stresses. Moreover, the identical
stiffness decreasing coefficient is adopted for each element so that
each of them is endowed with common unloading and reloading
stiffness. Suppose the fracture strain D(x) is a stationary random
field with the first-order density functions as follows:

f ðD; xÞ ¼ f ðDÞ ð11Þ

where x is the spatial coordinate of the random field. Then the
first-order cumulative distribution function of D(x) is

FðeÞ ¼
Z e

�1

f ðDÞdD ð12Þ

And define the first-order moment function as follows:

GðeÞ ¼
Z e

�1

Df ðDÞdD ð13Þ

It is clearly that F(e) and G(e) could be numerically calculated
by using f(D).

Let si be the stress of the ith element in the bundle, one
obtains

si ¼ sðxiÞ, i¼ 1,2. . .M ð14Þ

where xi denotes the spatial coordinate of the ith element and M is
the total number of the elements in the parallel system. Assume
that all the elements are endowed with the same sectional area.
Then the stress of the parallel system is

s¼ 1

M

XM
i ¼ 1

sðxiÞ ð15Þ

Performing a limit of Eq. (15) as M approaches infinity and
accounting for the definition of the stochastic integration, we get

s¼
Z 1

0
sðxÞdx ð16Þ

Eq. (16) represents the relationship between micro-stress and
macro-stress.

The micro-elements in the bundle could be classified into two
categories: cracked part and uncracked part (Fig. 7). Hence, the
split of the macro-stress was introduced as follows:

s¼ sd
þss

ð17Þ

where sd is the overall stress of the uncracked bundle, and ss is
the overall stress of the cracked bundle. According to Eq. (15), sd

could be expressed as

sd
¼

1

M

XM
i ¼ 1

HðDi�eÞsðxiÞ ð18Þ
where Di denotes the rupture strain of the micro-element located
in xi. Due to the elasticity of the uncracked elements, one obtains

sd
¼

1

M

XM
i ¼ 1

HðDi�eÞ
" #

Ee¼ 1�
1

M

XM
i ¼ 1

Hðe�DiÞ

" #
Ee ð19Þ

Performing a limit of Eq. (19) as M approaches infinity we
obtain

sd
¼ 1�

Z 1

0
H½e�DðxÞ�dx

( )
Ee ð20Þ

On the other hand, the classic definition of damage gives

d¼
Ad

A
ð21Þ

where Ad and A are the cracked area and the initial undamaged
area, respectively. Accounting for Eq. (21) and using the Heaviside
function, the damage index for the parallel element model is
defined as

dðeÞ ¼ 1

M

XM
i ¼ 1

Hðe�DiÞ ð22Þ

Again, performing a limit of Eq. (22) as M approaches infinity
and accounting for the definition of the stochastic integration, one
obtains

dðeÞ ¼
Z 1

0
H½e�DðxÞ�dx ð23Þ

Substitute Eq. (23) into Eq. (20), we obtain

sd
¼ ½1�dðeÞ�Ee¼ ½1�dðeÞ�se

ð24Þ

where se is the elastic effective stress.
ss represents the overall remnant stress of the bundle. By

analogy with Eq. (18), ss could be expressed as follows:

ss
¼

1

M

XM
i ¼ 1

Hðe�DiÞsðxiÞ ð25Þ

Performing a limit of Eq. (25), we obtain

ss
¼

Z 1

0
H½e�DðxÞ�sðxÞdx ð26Þ
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The analytical expressions of sd and ss will be discussed in the
following part considering the hysteretic loading condition.

2.2.1. Monotonic loading curve

Substituting Eq. (3) into Eq. (16), we obtain the monotonic
loading curve for the parallel system as follows:

s¼ 1�

Z 1

0
H½e�DðxÞ�dx

( )
EeþZsE

Z 1

0
DðxÞH½e�DðxÞ�dx ð27Þ

Comparing Eq. (27) with Eq. (17), and considering Eqs. (24)
and (26), we obtain

sd
¼ 1�

Z 1

0
H½e�DðxÞ�dx

( )
Ee¼ ½1�dðeÞ�Ee ð28Þ

ss
¼ ZsE

Z 1

0
DðxÞH½e�DðxÞ�dx ð29Þ

Let m(d) be the expectation operator. Then performing the
expectation operator to Eq. (28), we get

m½sd
� ¼ f1�m½dðeÞ�gEe ð30Þ

where

m½dðeÞ� ¼ m
Z 1

0
H½e�DðxÞ�dx

( )
¼

Z 1

0
mfH½e�DðxÞ�gdx

¼

Z 1

0

Z þ1
�1

Hðe�DÞf ðDÞdDdx

¼

Z 1

0

Z e

�1

f ðDÞdDdx¼ FðeÞ ð31Þ

According to Eq. (31) it is observed that the mean value
function of the damage evolution is not other than the probability
distribution function of the micro-fracture strain.

Performing the expectation operator to Eq. (29), we get

mðss
Þ ¼ ZsEm

Z 1

0
DðxÞH½e�DðxÞ�dx

( )
ð32Þ

where

mf
Z 1

0
DðxÞH½e�DðxÞ�dxg ¼

Z 1

0
mfDðxÞH½e�DðxÞ�gdx

¼

Z 1

0

Z þ1
�1

DHðe�DÞf ðDÞdDdx

¼

Z 1

0

Z e

�1

Df ðDÞdDdx¼ GðeÞ ð33Þ

Then performing the expectation operator to Eq. (17) and
considering Eqs. (30)–(33) we obtain

mðsÞ ¼ mðsd
Þþmðss

Þ ¼ ½1�FðeÞ�EeþZsEGðeÞ
¼ f1�m½dðeÞ�gEeþZsEGðeÞ ð34Þ

It is observed that Eq. (34) is the overall stress–strain relation
under monotonic loading.

2.2.2. Unloading and reloading curve

Substituting Eq. (6) into Eq. (16), we obtain the unloading
curve for the parallel system as follows:

smax�s¼
Z 1

0
f1ðemax�eÞdxþ

Z 1

0
f2ðemax�eÞdxþ

Z 1

0
f3ðemax�eÞdx

ð35Þ
whereZ 1

0
f1ðemax�eÞdx¼

Z 1

0
HðD�emaxÞEðemax�eÞdx

¼ ½1�dðemaxÞ�Eemax�½1�dðemaxÞ�

Ee¼ sd
max�s

d
ð36Þ

Hence we obtain the unloading expression for sd as follows:

sd
¼ ½1�dðemaxÞ�Ee ð37Þ

It is observed that the damage index remains constant during
unloading. Then performing the expectation operator to Eq. (36),
one obtains

mðsd
max�s

d
Þ ¼ f1�m½dðemaxÞ�gEðemax�eÞ
¼ ½1�FðemaxÞ�Eðemax�eÞ8F1ðemax�eÞ ð38Þ

where 8 denotes ‘‘define as’’.
Substitute Eq. (36) into Eq. (35), one obtains

ss
max�s

s
¼

Z 1

0
f2ðemax�eÞdxþ

Z 1

0
f3ðemax�eÞdx ð39Þ

Performing the expectation operator to Eq. (39), one gets

mðss
max�s

s
Þ ¼ m

Z 1

0
f2ðemax�eÞdx

" #
þm

Z 1

0
f3ðemax�eÞdx

" #

¼

Z 1

0
m½f2ðemax�eÞ�dxþ

Z 1

0
m½f3ðemax�eÞ�dx ð40Þ

where

m f2ðemax�eÞ
� �

¼ m H emax�DðxÞ½ �H
Zs

Ze

D�ðemax�eÞ
� �

ZeEðemax�eÞ
� �

¼ ZeEðemax�eÞ
Z þ1
�1

H emax�D½ �H
2Zs

Ze

D�ðemax�eÞ
� �

f ðDÞdD

¼ ZeEðemax�eÞ
Z emax

ðZe=2ZsÞðemax�eÞ
f ðDÞdD

¼ ZeEðemax�eÞ FðemaxÞ�F
Ze

2Zs

ðemax�eÞ
� �� �

¼ ZeEðemax�eÞ m dðemaxÞ
� �

�F
Ze

2Zs

ðemax�eÞ
� �� �

ð41Þ

m f3ðemax�eÞ
� �

¼ m Hðemax�DÞH ðemax�eÞ�
2Zs

Ze

D
� �

2ZsED
� �

¼ 2ZsE

Z þ1
�1

DHðemax�DÞH ðemax�eÞ �
2Zs

Ze

D
� �

f ðDÞdD

¼ 2ZsE

Z ðZe=2ZsÞðemax�eÞ

�1

Df ðDÞdD¼ 2ZsEG
Ze

2Zs

ðemax�eÞ
� �

ð42Þ

Then we define

F2ðemax�eÞ ¼ m
Z 1

0
f2ðemax�eÞdx

" #
¼ ZeEðemax �eÞ

� FðemaxÞ�F
Ze

2Zs

ðemax�eÞ
� �� �

ð43Þ

F3ðemax�eÞ ¼ m
Z 1

0
f3ðemax�eÞdx

" #
¼ 2ZsEG

Ze

2Zs

ðemax�eÞ
� �

ð44Þ



Fig. 8. Mean value stress–strain curve.

Fig. 9. Local hysteretic response of quasi-brittle materials.
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Performing the expectation operator to Eq. (35) and consider-
ing Eqs. (36)–(44), we obtain

mðsmax�sÞ ¼ mðsd
max�s

d
þss

max�s
s
Þ

¼ mðsd
max�s

d
Þþmðss

max�s
s
Þ ¼F1ðemax�eÞ

þF2ðemax�eÞþF3ðemax�eÞ ð45Þ

Eq. (45) could be expressed using the following abstract
function:

mðsmax�sÞ ¼Hðemax�eÞ ð46Þ

where

HðxÞ8F1ðxÞþF2ðxÞþF3ðxÞ ð47Þ

Performing the similar procedure to Eq. (10), we obtain the
mean value expression for the reloading curve as follows:

mðs�sminÞ ¼Hðe�eminÞ ð48Þ

Noting that if the current strain e exceeds the original
unloading strain emax, the mean value stress–strain path will
return to the monotonic curve expressed by Eq. (34). The mean
value stress–strain curve is illustrated in Fig. 8.

2.2.3. Hysteretic loop

It is observed from Fig. 8 that the local hysteretic loop, which is
an essential non-linear characteristic of the quasi-brittle material,
is made up of the unloading and the reloading curves expressed
by Eqs. (46) and (48), respectively. However, under the compli-
cated repeated loading such as the earthquake, a suite of
hysteretic rules is required to describe the sequential hysteretic
loops before returning to the initial monotonic loading curve. In
the present paper, the quasi-brittle material subjected to the local
hysteretic loading is modeled as the parallel element bundle
shown in Fig. 7. The uncracked elements remain elastic during the
local hysteretic loading, and the elastic-perfectly plastic behaviors
are observed for the cracked elements according to the former
discussions. Since all the elements are attached to the rigid bar on
the end, the strain within the bundle is uniformly distributed for
all the elements. On the other hand, this overall strain for each
cracked element is equal to the strain summation of the elastic
spring and the sliding element. And the strain distribution
between the elastic element and the sliding element is influenced
by the loading history. Hence not only the current strain but also
the strain history is required to determine the hysteretic
responses of the model under non-uniform repeated loading.

The direct numerical implementation for this model is difficult
and time consuming because the internal behaviors of each
element should be tracked during the analysis. By noting Iwan
[14] and Jayakumar [15], it is demonstrated that the hysteretic
behavior of the parallel buddle could be exactly described through
several phenomenological rules. Therefore, based on the loading,
unloading and reloading equations developed in the former
chapter, two rules for the parallel element model under repeated
loading are proposed as follows (see Fig. 9):

Rule 1 (Incomplete loops): The equation of any hysteretic
response curve can be obtained by the following expressions:

s¼ ½1�FðeÞ�EeþZsEGðeÞ loading curve

s��s¼Hðe��eÞ unloading curve

s�s� ¼Hðe�e�Þ reloading curve

8><
>: ð49Þ

where ðe�,s�Þ is the load reversing point for that branch, function
HðdÞ was defined in Eq. (47).

Rule 2 (Completed loops): If an interior curve under continues
loading or unloading crosses a curve described in a previous load
cycle, the force–deformation curve follows that of the previous
cycle.
3. Model verification

3.1. Random distribution for threshold strain random field

As mentioned before, the fracture strain D(x) is modeled as a
stationary random field with the mean value mD and the standard
deviation VD. It is clear that the first-order density functions
should be specified before the stress–strain curve is calculated.
The lognormal distribution is usually adopted to describe the
randomness of the fracture strength for concrete [29]. In the
micro-level, the fracture stress is proportional to the fracture
strain. Thus it is reasonable to choose lognormal distribution to
describe the rupture strain field. The lognormal density distribu-
tion function could be expressed as

f ðDÞ ¼
1ffiffiffiffiffiffi
2p
p Dzexp �

1

2

lnðDÞ�l
z

� �2
( )

ð50Þ

where the parameters l and z are:

l¼ E lnDðxÞ
� �

¼ ln
mDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þV2
D=m2

D

q
0
B@

1
CA ð51Þ

z2
¼ var½lnDðxÞ� ¼ lnð1þV2

D=m
2
DÞ ð52Þ

Then ZðxÞ ¼ lnDðxÞ is a homogeneous normal random field with
the mean value l and the standard deviation z.

On the other side, the shape of the Weibull distribution is
similar with the lognormal distribution, but it is easier to compute
the cumulative distribution for the Weibull distribution by using
its analytical solution. Thus we adopt Weibull distribution as one
of the possible simplification for our model. The two-parameter
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Weibull density distribution function is

f ðDÞ ¼
b

a

D
a

	 
b�1

exp �
D
a

	 
b
" #

ð53Þ
Fig. 10. Comparison between numerical stress–strain curves: (a) analytical

solution vs. random simulation (lognormal distribution), (b) analytical solution

vs. random simulation (Weibull distribution), and (c) lognormal distribution vs.

Weibull distribution.
And the corresponding cumulative distribution function is

FðDÞ ¼ 1�exp �
D
a

	 
b
" #

ð54Þ

The mean value of the Weibull distribution with parameters a

and b is

mD ¼ aG 1þ
1

b

	 

ð55Þ

and the variance is

V2
D ¼ a2 G 1þ

2

b

	 

�G2 1þ

1

b

	 
� �
ð56Þ

where G(x) is the Gamma function.
3.2. Numerical simulation

To verify the foregoing analytical expressions derived the
parallel element model, numerical results based on both the
analytical solutions and the stochastic simulations are calculated
and compared in this section. Both the lognormal distribution and
the Weibull distribution are adopted for the simulation. The
Fig. 11. Repeated tensile loading curves: (a) stress–strain response of lognormal

random field and (b) stress–strain response of Weibull random field.



Fig. 12. Repeated compressive loading curves: (a) stress–strain response of

lognormal random field and (b) stress–strain response of Weibull random field.
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numerical results are illustrated in Fig. 10 (E¼37,559 MPa,
Zs¼0.15, Ze¼0.3, l¼5.0, z¼0.45, a¼190 and b¼2.0)

It is observed that the analytical stress–strain curves agree
well with the stochastic simulated curves in Fig. 10. However, the
stochastic simulation method is expensive because the loading
path of each element should be tracked. It is indicated that both
the lognormal and the Weibull random fields can reproduce the
complicated hysteretic deteriorating behaviors for the quasi-
brittle materials. But the difference between them is of particu-
larly interesting. The increasing part of the stress–strain curve of
the lognormal random field is higher due to the initial horizontal
part of the density function.

3.3. Results for concrete

Taylor [30] conducted the repeated tensile loading tests for
concrete and obtained the stress–strain curves illustrated in
Fig. 11 against the analytical curves simulated with the proposed
model. The elastic modulus of the concrete specimen is E¼34,810
MPa. The parameters of the lognormal type model are found to be
l¼5.0, z¼0.35, Zs¼0.09 and Ze¼0.25. And the parameters of the
Weibull type model are a¼180, b¼2.4, Zs¼0.09 and Ze¼0.20.

The testing results of the repeated compressive experiment
conducted by Karson and Jirsa [31] are plotted in Fig. 12 against
the numerical predictions. The elastic modulus is identified to be
E¼32,000 MPa. The parameters of the lognormal type model are
l¼7.38, z¼0.71, Zs¼0.12 and Ze¼0.25. And the parameters of the
Weibull type model are a¼2100, b¼1.35, Zs¼0.13 and Ze¼0.25.

It is observed that the stress–strain responses generated from
the lognormal distribution are in better agreement with the
experimental data than those from the Weibull distribution. On
the other hand, the numerical implementation of the Weibull
distribution is more efficient. Hence the selection of the distribu-
tion should be considered based on the balance between the
accuracy and the efficiency.
4. Summary and conclusions

A micromechanical model has been developed in this paper for
the quasi-brittle materials subjected to hysteretic loading. Based
on the theoretical derivation and the numerical simulation,
several conclusions can be drawn:
�
 The hysteretic deteriorating model proposed in this paper is able
to represent the softening and the hysteretic behaviors for the
quasi-brittle materials under non-uniform repeated loading.

�
 Not only the current state variables but also the loading

histories are considered within this model.

�
 The stochastic averaging procedure is a simple but efficient

way to bridge the response between the micro-scale and the
macro-scale.

�
 Combining with the appropriate method for the structure

analysis, this model could represent the subtle dynamic
responses for structures.
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